

A DRIVER-BASED RELIABLE DISTRIBUTED FIREWALL SYSTEM

MUMTAZ MOHAMMED ALI AL-MUKHTAR

College of Information Engineering, AL-Nahrain University

IRAQ

ABSTRACT

This paper proposes a Reliable Distributed Firewall System (RDFS), which is a client-server network paradigm. The system

consists of two elements: a Distributed Firewall-Client, which captures every transmitted or received packet, originated from

or received by the client machine, and then applies the filtering rules on these packets. The second element is the Firewall-

Controller designed as a user friendly GUI, which manages the Firewall-Clients on all the machines. It can read, write or

modify the rules for each client individually through authenticated and secured communication channels. Each Firewall-Client

uses the Firewall-Hook Driver on Windows platform as the firewall application.

The proposed distributed system addresses the shortcomings of the conventional firewall as being the networks’ bottleneck.

This is done by decentralizing the packets filtering processes and making them work independently. This would increase the

system availability and at the same time protect against internal attacks, which is unfeasible using the conventional firewall

setup. In addition, the system can be configured for fail-over mode, by imposing a dual controller. This would enhance the

overall system availability remarkably. Policy optimization techniques for rules and security policies are developed to reduce

the processing requirement per packet, thus faster filtering speed can be achieved.

Keywords: Firewall, Network Security, Security Management, Firewall-Hook Driver, Dual-Redundancy

1. INTRODUCTION

Firewalls have become a very common technology to

use for securing computers and networks. A firewall can be

classified as any device that limits network access. It is a

collection of components inserted between two networks

that filter traffic between the networks according to a local

security policy [1].

Conventional firewalls rely on notions of restricted

topology and control entry points to function. More

precisely, they rely on the assumption that everyone on one

side of the entry point-the firewall- is to be trusted, and that

anyone on the other side is, at least potentially-an enemy

[2].

The assumption that all insiders are trusted no longer

holds true as organizations try to safeguard themselves

against other types of threats [3]. Conventional firewalls

were never designed to solve the insider problem, and

intrawalls, which move security enforcement closer to the

user, ease the problem only slightly at the cost of

significantly more complex management [4]. Due to the

increasing line speeds and the more-computation-intensive

protocols that a firewall must support, firewalls tend to

become congestion points.

The distributed firewall concept, first introduced by

Bellovin in 1999 [5], provides firewall protection at the

network end-points via a centrally defined policy. Unlike

conventional firewalls, which only provide protection at the

network perimeter, distributed firewalls provide host

protection for internal threats. Distributed firewalls are

topology-independent, provide fine-grained access control,

and reduce global performance bottleneck.

Some works [6,7] attempt to solve the problems using

multiple firewalls. However, what comes into question is

whether the added cost of hardware and delay is worth the

added security. Ioannidis, Keromytis, Bellovin and Smith

[8] described a distributed firewall for Open BSD hosts. In

this scheme, security policy is still centrally defined using

the Kenote trust management system [9] to specify,

distribute, and resolve policy. Concepts of an embedded

distributed firewall architecture that is implemented on the

host’s network interface card (NIC) are described in

[10,11,12]. A possible way to implement a distributed

firewall by the use of the agent technology is proposed in

[13] where firewall rules sets are to be distributed to a set of

controller agents scattered on some network nodes. In [14],

the authors propose a distributed Internet security system

called General Network Security Collaboration Framework

(GNSCF) where firewalls are used as the basic network

element of the network.

This paper introduces a distributed firewall

architecture called Reliable Distributed Firewall (RDF). A

firewall is placed at each host in the network to address the

insider problem. The kernel-mode driver “Firewall Hook

Driver” supported by windows 2000/XP platforms and later

version is developed to manage a host’s packet filter

firewall. Policy management remains centralized. A dual-

redundant controller manages all the hosts. However, each

host can be configured in a way that does not affect the

others, i.e., managed independently.

In conclusion, three main contributions are made in

this paper: (1) the controller (policy manager) can support

redundancy that enhances the overall system reliability; (2)

the communication between the controller and clients is

secure and authenticated; (3) the ruleset is optimized by

discarding the overlapped or conflict rules.

2. FIREWALL-HOOK DRIVER

The basic structure of a Microsoft®

Windows® 2000/XP related to Window Driver Model

ACIT 2007, 26-28 November 2007, Lattakia, Syria 67

(WDM) consists of a required set of system-defined

standard driver routines, plus some number of optional

standard routines and internal routines, depending on the

type of a driver and the underlying device. The common set

of standard routines allows all kernel-mode drivers to

process I/O Request Packet (IRP) by calling system-

supplied support routines [15].

The Microsoft Windows 2000 Driver Development

Kit (DDK) introduced the concept of a firewall-hook driver.

The intent of a firewall-hook driver is to manage network

packets that are sent and received across a firewall in the

context of the TCP/IP protocol [16].

Implementing the firewall-hook driver to manage

network packets constitutes a low down solution in the

network stack that enhances the overall firewall

performance significantly. The basic idea is simple; a DDK

translates the policy language into driver internal format.

The system controller distributes this policy file to all hosts

that are protected by the firewall. All incoming packets are

accepted or rejected by each host according to the policy

without affecting the machine’s performance or throughput.

3. SYSTEM FILTERING POLICY

The filtering function would start at the top of the

ruleset’s link list and work down through the rules.

Whenever a rule that permits or denies the packet is found,

one of the following actions is taken:

• Allow: the function will forward the packet to its

destination as requested.

• Deny: the function will discard the packet

without returning an error message to the source; this

will hide the firewall presence for the outsiders. Also

an entry will be generated in the log file; the entry

consists of the dropped packet’s information and the

time of incidence.

The default rulesets for each firewall filter are

predefined depending on the controller’s IP address, the

client’s IP address and the communication port used. The

system uses “the deny all” as access denial method that is

all the inbound and outbound traffic is denied unless it is

explicitly allowed by the ruleset. Therefore the

communication ports are explicitly allowed at the setup

time.

4. RELIABLE DISTRIBUTED

FIREWALL ARCHITECTURE

The Reliable Distributed Firewall System (RDFS)

consists mainly of the following modules:

• Controller Module: it manages (add, modify,

delete, and optimize) the ruleset for the client

modules. This module is also responsible for keeping

track of each client module update time and history.

The controller supports redundancy by implementing

a fail-over mode. This mode requires the availability

of a second controller in the network. So it is possible

to configure a redundant controller to enhance system

availability.

• Client Module: it implements the ruleset that the

controller module sends for execution by the driver

module. This module acts as the interface between

the controller and the driver modules.

• Communication Module (Comm.): this module is

responsible for securing the flow of filtering rules and

control signals between the controller and client

modules by adopting the data authentication and

encryption techniques.

• Optimization Module: this module is responsible

for optimization the ruleset before sending it to the

client module for implementation. This module

increases the firewall performance.

• The Diver Module: it manages the driver

installation and uninstallation. In addition it manages

the execution of the ruleset sent by the client module.

Figure 1 illustrates the RDFS architecture and the

interaction among its modules that are shown in a shaded

color. The upper part illustrates the controller application

that based on an optional dual-redundancy. The system can

run in a single mode where only one controller exists, or in

a fail-over that requires the presence of two controllers.

The fail-over mode is the important insurance of

controller application to operate continuously. The dual

controller system adopts “heartbeats” method to keep

connection between the primary and secondary controllers,

and to show the present operation state of the system. The

heartbeat is represented in figure 1 by a dotted line. The

lower part of the figure represents the firewall-client

application, which constitutes the packet filter.

Figure -1- The RDFS Architecture

 THE CONTROLLER MODULE

The controller module is the main part of the

proposed system. Its main objective is the management of

the distributed firewall-clients in terms of behavior and

filtering rules. This would be done for each client

independently of the others.

The multiple clients’ management is done through an

easy to use GUI where all the functionality of the controller

can be carried out. All the administration is done using this

ACIT 2007, 26-28 November 2007, Lattakia, Syria 68

module only; hence this module represents the only

interface the system administrator will use to control the

system and the clients. This module interacts directly with

two other modules: the optimization module and the

communication module.

4.1.1 MODULE OVERVIEW

This module consists of two parts; client part which

controls the client behavior (add, delete, and start/stop

service on the designated client). The second part is the

ruleset or policy part, which controls the ruleset of the

designated client. This part manages the addition, deletion,

modification and rearranging of rules. Also it is responsible

for interacting with communication module for fetching and

sending the rules from and into the clients. This is

illustrated in figure 2, which shows the controller module’s

components and its interaction with the other two modules.

Figure -2- Controller Module

4.1.2 FAIL-OVER MODE

By installing a second controller into the network, a

fail-over mode can be accomplished. It is possible to

configure a redundant controller to provide a continued

operation.

The following notes will summarize the behavior of

this mode:

• This mode works only with two controllers

located in the same subnet.

• The primary and the secondary controllers are

determined during setup time.

• An indication is shown in the controller’s GUI

window to differentiate between the primary and the

secondary controllers.

• All GUI functions of the secondary controller

will be disabled except for the view functions, which

enable only one active controller in the network.

• Each controller listens to other controller’s

heartbeat. Once after certain measure cycles, the

secondary controller does not receive the heartbeat

from the primary, it can mark the primary controller

as faulty. Hereafter, the secondary controller takes

over the control in place of the primary controller.

• When the faulty primary controller is put again

into operation, it will still be considered as the

secondary controller, and will be authorized only to

update its client list from the active controller’s list

periodically.

• If the secondary is detected as faulty, the primary

indicates the failure of the secondary in the

controller’s GUI window.

4.1.3 FIREWALL CONTROLLER’S

 FUNCTIONS

The controller module comprises the following

functions:

• Functions of the Client Part: Add Client, Delete

Client, Update Client List, Start/Stop Service, Save

Client List, Load Client List, and Configure Client

Firewall.

• Functions of the RuleSet Part: Add Rule, Delete

Rule, Modify Rule, Clear List, and Arrange Rule.

These functions are summarized on table 1.

Table -1- Controller Functions Summary

Function

Name
Function Summery

Add Client
Adds a new client or multiple clients into

the client List.

Delete

Client
Deletes a selected client from the client list.

Update

Client List

Refreshes the client List and tries to find

the status of the clients in the list (on-Line

or off-Line).

Start/Stop

Service

This toggles the filtering function ON or

OFF, but keeps the rules installed.

Save Client

List
Writes the client list into a file.

Load Client

List
reads the client List from a file.

Configure

Client

Firewall

This functions loads up the ruleset window

(if the Client is On-Line) and starts the

ruleset management.

Add Rule

This pops-up the add rule window; it adds

a new entry row (rule) in the rules list after

entering the required data.

Delete Rule Deletes a selected rule and updates the list

Clear List
Deletes all the rules and loads the default

ruleset instead.

Modify Rule

Modifies a selected rule by enabling the

change of any data in the add new rule

window.

Arrange

(Up/Down)

These two functions can move a rule up or

down respectively one row each time

activated.

 THE CLIENT MODULE

This module acts as the main application in the client

side. It does not have a GUI to be managed from, but its

main function is to maintain the filter operations and keep

the communication channels open with the controller for

obtaining new set of rules.

ACIT 2007, 26-28 November 2007, Lattakia, Syria 69

This module works as an interface between the

controller and the driver modules, because the controller

has no ability to communicate directly with the driver

module. The module relays the rules and control signals

from the controller module into the driver module. Figure 3

Figure -3-Client Module

illustrates the client module, its components and its

interaction with other modules.

 THE COMMUNICATION MODULE

This module is responsible for sending and receiving

data and controls between the controller and clients

modules in secure channels. The security is accomplished

by data authentication and encryption. Figure 4 illustrates

the communication module and its components.

The communication module function breaks down to

seven simple steps:

• Prepare the data for sending using authentication

and encryption techniques.

• Open (create) a socket.

• Name the socket.

• Associate with another socket.

• Send and receive data between sockets.

• Authenticate then decrypt the received data.

• Close the socket.

Figure - 4 - Communication Module

A network client-server model is implemented in this

system. However, concerning the implementation of this

module, the controller represents the client and the firewall-

client represents the server. The controller would request a

service from the firewall-client (pulling the rules or status

and sending them back). Whereas The firewall-client

manages the requested service.

The firewall-client application normally listens at a

certain address (controller’s address) and port address

(port# 8148) for new control signals or data generated from

the controller. When the controller requests a service, the

firewall-client’s server processes “wakes up” and services

the controller, performing whatever appropriate actions the

controller requested. Table 2 shows the controller’s

requests and their corresponding services obtained from the

client-firewall.

Table -2- Requests and Services

Controller Requests Firewall-Client Services

Is_Client_On-Line Sends a status signal if on-line.

Retrieve_Rules
Send all the current ruleset to the

controller.

Send_Rules
Replace the current rules in the

filter with new rulesets.

Start_Filtering Starts applying the rules on the

incoming and outgoing packets.

Stop_Filtering
Stops the filtering actions and

accepts all packets.

Before sending any data or control messages to the

other communication module, this module runs the secure

hash authentication algorithm (SHA), which will result in

additional 4 bytes hash code. Thereafter it encrypts the data

as well as the resultant code using Rijndeal Algorithm and a

predefined key (agreed to by both parties). Now the data is

ready to be sent via the communication media.

At the other party (the recipient), the process is

reversed; that is, first the module will retrieve the encrypted

data using the sockets, and then decrypts it using the

predefined key. Thus the data now goes to the

authentication process and where the hash code is extracted.

Thereafter it runs the SHA hash authentication algorithm on

the data and compares the computed code with the

extracted code. If there were a match then this data is

authenticated and should be passed into the upper modules,

else the data is not authenticated and should be discarded.

 THE OPTIMIZATION MODULE

The main objective of the optimization module is to

assist in firewall policy editing that will lead to speeding up

the firewall operation and this is done by:

• Detecting and removing all the redundant rules in

the ruleset.

A redundant rule performs the same action on the

same packets as another rule. When a large number of

filtering rules exist in a policy, the possibility of writing

conflicting redundant rules is relatively high. A redundant

rule may not contribute in making the filtering decision,

however, it adds to the size of the filtering rule table, and

might increase the search time and space requirements.

ACIT 2007, 26-28 November 2007, Lattakia, Syria 70

• Arranging the rules according to their use i.e., the

common functions first.

The ordering of filtering rules in a security policy is

very important in determining the firewall policy because

the firewall-hook packet filtering process is performed by

sequentially matching the packet against filtering rules until

a match is found (linked list is adopted). When a large

number of filtering rules exist in a policy, the possibility of

writing conflicting or redundant rules is relatively high.

• Detecting the shadow rules.

 A rule is shadowed when a previous rule matches all

the packets that match this rule, such that the shadowed rule

will never be evaluated. Shadowing is a critical error in the

policy, as the filtering rule never takes effect. This might

cause a permitted traffic to be blocked and vice versa.

• Detecting the general rules.

A rule is a generalization of another rule if the first

rule matches all the packets that the second one could

match but not the opposite.

• Maintaining the adopted access denial method at

all times.

However, optimization the search time complexity is

not a concern. Whereas the clarity and simplicity of the

resultant ruleset are main issues because the optimization is

done at the controller’s ruleset window which will not

affect the client operations. Initially no relation is assumed.

Each field in Rule 1 is compared to the corresponding field

in Rule 2 starting with the protocol then source address and

port number, and finally destination address and port

number. The relationship between the two rules is

determined based on the result of subsequent comparisons.

If every field of rule 1 is a subset or equal to the

corresponding field in rule 2 and both rules have the same

action, rule1 will be redundant to rule 2, while if the actions

are different, rule 1 will be shadowed by rule 2.

 THE DRIVER MODULE

Firewall-Hook Driver is not a network driver; it is a

kernel mode driver. Basically, in this Firewall-Hook driver

a callback function should be implemented, and then, the

function should be registered with the Firewall-Hook

driver. Now whenever a packet is being sent and received,

the firewall driver will call the callback function each time.

Figure 5 shows the driver module and its functions that are

summarized on table 3.

Fig -5- Driver Module

Table -3- Driver Routine Summary

Routine Name Function Summary

DriverEntry
Initializes driver and sets entry

points for other standard routines.

Dispatch
Handles IRPs with one or more

major function codes.

Install Filter Adds the rules to the filter function.

Firewall-Hook

Filter
Filtering function.

Start_Firewall_

Hook
Starts the filtering function.

Stop_Firewall_

Hook
Stops the filtering function.

Uninstall Filter
Cleans up so that the driver can be

unloaded.

5. CONCLUSIONS

An approach to the integration of security, reliability,

and performance has been devised. It is based on the

observation that a firewall system could be described in

distributed and protective terms. A distributed viewpoint is

related to the reliability and availability aspects. A

protective viewpoint describes how to protect the network

from inside as well as outside. Also implementing the

firewall-hook driver to manage network packets constitutes

a low down solution in the network stack that could

enhance the overall firewall performance significantly.

The proposed Distributed Reliable Firewall system

provides:

• Independent firewalls (represented by the

clients), which can provide a security within the

network by filtering directly at the client.

• Centralized management for the distributed

firewalls with redundancy capability also enhances

the system reliability and ensures that each client

carries its work without any interruption even if the

management (controller) fails.

• There is no longer a single chokepoint or a single

point of failure that can isolate an entire network

from both performance and availability standpoint.

This is done by using the distribution and redundancy

(controller’s fail-over mode) approaches.

• An increase in the overall system speed is

achieved by increasing the speed of clients’ filtering

operations by implementing rules optimization.

• Secure channels for transferring controlling

signals and rules between the controller and the

clients; these channels are created by implementing

message encryption and authentication.

Future works will focus on the following directions:

• Implementing a content filtering, that can read

the content of the packets and base their decisions

upon specific contents (word(s), whole line(s) and

URL(s)).

ACIT 2007, 26-28 November 2007, Lattakia, Syria 71

• Installing the client part automatically from the

Server side without the need for local installation.

• Storing the entire clients’ rules in an SQL

database server. This would facilitate retrieving and

can be used as a filtering rules knowledge base.

REFERENCES

[1] Cheswick W. R., Bellovin S. M., and Rubin A. D.,

Firewalls and Internet Security, 2
nd
 Edition, Addison-

Wesly, 2003.

[2] Pan Chi-Chien, Yang Kai-Hsiang, and Lee Tzao-Lin,

“ Secure Online Examination Architecture Based on

Distributed Firewall”, IEEE International Conference

on e-Technology, e-Commerce and e-Service, pp. 533-

536, March 2004.

[3] Verma Paven, and Prakash Atul, “FACE: A Firewall

Analysis and Configuration Engine”, Proceedings on

Applications and the Internet (SAINT”05), pp. 74-

81,31 Jan.-4 Feb. 2005.

[4] Markham Tom, and Payne Charlie, “Security at the

Network Edge: A Distributed Firewall Architecture”,

Proceeding of the DARPA Information Survivability

Conference and Exposition (DISCEX II), Anaheim,

CA, June 2001.

[5] Bellovin S. M., “Distributed Firewalls”, login:

magazine, special issue on security, pp.37-39,

November 1999.

[6] Smith N. Robert, “ Cascade of Distributed and

Cooperating Firewalls in a Secure Data Network”,

IEEE Transactions on Knowledge and Data

Engineering, Vol. 15, No. 5, pp. 1307-1315,

September/October 2003.

[7] Meredith Lynn M., “A Summary of the Autonomic

Distributed Firewalls (ADF) Project”, Proceedings of

the DARPA Information Survivability Conference and

Exposition (DISCEX’03), Washington DC, April

2003.

[8] Ioannidis, S., Keromytis, A. D., Bellovin S. M., and

Smith J. M, “Implementing A distributed Firewall”,

7
th

 ACM Conference on Computer and

Communications Security, Athens, GREECE, pp.

190-199, November 2000.

[9] Blaze M., Feigenbaum J., Ioannidis J., and Keromytis

A. D., “The Keynote Trust Management System

Version 2”, Internet RFC 2704, September 1999.

[10] Payne Charles, “Architecture and Applications for a

Distributed Embedded Firewall”, Proceeding of the

17
th

 Annual Computer Security applications

Conference (ACSAC’01), IEEE Computer Society,

December 2001.

[11] Liu Alex X.and Gouda Mohamed G.,” Diverse

Firewall Design”, Proceedings of the International

Conference on Dependable Systems and Networks

(DSN’04), IEEE Computer Society, September 2004.

[12] Ihde Michael and Sanders W. H., “Barbarian in the

GATE: An Experiment Validation of NIC-based

distributed Firewall performance and Flood

tolerance”, Proceedings of the International

Conference on Dependable Systems and Networks

(DSN’06), pp. 209-216, 2006.

[13] Boughaci D., Drias H., Oubeka B., Aissioui A., and

Benhamou B.,” A Distributed Firewall Using

Autonomous Agents”, Proceedings of the

International Conference on Dependability of

Computer Systems (DEPCOS-RELCOMEX”06), pp.

256-263, May 2005.

[14] Thomas J. Lane, and Abler Randal, “ Implementing

Distributed Internet Security Using A Firewall

Collaboration Framework”, Southeast Conference,

IEEE, pp.680-685, March 2007.

[15] Smirnov V.Vadim, “ Firewalls for Windows

9x/NT/2000”, 2001.

http://www.ntkernel.com/articles/firewaaeng.shtml

[16] Microsoft Windows Driver Development Kits, 2003.

http://www.microsoft.com/whdc/ddk/winddk.mspx

ACIT 2007, 26-28 November 2007, Lattakia, Syria 72

