
 

CONSTELLATION DISCOVERY FROM OLTP PARALLEL-RELATIONS 
 

JAMEL FEKI 

YASSER HACHAICHI 

 

Laboratory MIRACL, Faculté des Sciences Economiques et de Gestion de Sfax 

Route de l’Aéroport km 4,  B.P. 1088 Sfax, Tunisia 

Jamel.Feki@fsegs.rnu.tn 

Yasserhfr@yahoo.fr 

 
 

ABSTRACT 

 

Meaningful OLAP analyses often need to examine 

correlated data, i.e., data coming from multiple facts. 

Constellation schemes provide for this kind of need. In 

order to help the decisional designer construct efficient 

data marts, we propose a method that discovers and 

constructs constellation schemes directly from the 

relational database of the enterprise information system. 

For this, we define the concept of parallel-relations on 

which we base this construction and, a set of 

construction rules. Parallel-relations materialize 

interrelated business activities and therefore are good 

candidate for constellation construction. The 

construction rules extract multidimensional concepts; 

they build facts and measures on parallel-relations and, 

dimensions and their attributes on relations connected 

to parallel-relations. Our rules have the merit to 

produce dimensional attributes organized in hierarchies 

and, they keep track of the origin of each 

multidimensional component in the generated data mart 

schema. This trace is fundamental for the ETL 

processes.   

Keywords: Decisional support system, Parallel-relations, 

Fact constellation construction, relational 

data source. 

 

1. INTRODUCTION AND 

MOTIVATIONS 
 

Decisional support systems (DSS) gather operational 

business information for decision support functionalities 

and data analyses. They still motivate several research 

issues such as design methodologies [16] [11] [12] [19], 

[20], complex data storage and manipulation [4], 

evolution [1], etc. They organize data in data warehouses 

(DW) and data marts (DM) [21]. A DM is modeled in a 

multidimensional way to facilitate the manipulation of 

data to decision-makers [18]. The commonly used 

multidimensional data models for DM are star [16] and 

constellation schemes [17]. In our previous works, we 

addressed the problem of constructing DM schemes 

directly from a relational database [10]. We proposed a 

set of rules [13] that allow the construction of star 

schemes. We demonstrated experimentally that this set 

of heuristics generates stars for all plausible facts over 

the given relational data sources. However, the generated 

schemes suffer from two lacks: i) all are limited to stars 

(no constellations are envisaged), and ii) sometimes the 

obtained stars contain common elements; in particular, 

some measures may appear in different facts having 

common dimensions. Moreover, we consider that the star 

schema is insufficient because it models one single fact 

at a time. However, in many situations, decisional users 

look for combined analyses, more sophisticated than 

those offered by a star schema. 

 

Considering these aspects, the constellation schema, 

which is a generalization of the star, is preferable 

because it gathers two or several facts sharing common 

dimensions. That is, constellation schema allows cross-

facts analyses that examine one fact with respect to 

others. Hence, constellations intensify analyses giving 

decision-makers the opportunity to better 

explore/understand their business performances. For 

instance, given a constellation composed of two facts, 

called Sale and Purchase, having the common 

dimensions Date, Product, Retail then the decision-

maker who detects a free fall of sales in a given retail 

outlet can probably have the idea to throw a glance on 

the purchases (provisioning of stock) of that retail outlet 

during the same period. This significant decrease in sales 

may be due to a decrease in stock provisioning! To 

perform such an analysis, we need to build data marts 

with constellated facts.  

We can design constellations in several ways: (i) on 

explicit request of decision-makers, or (ii) by 

examining/merging the decisional system star schemes, 

ACIT 2007, 26-28 November 2007, Lattakia, Syria 1



 

or, yet again, (iii) by identifying constellations 

automatically during the DSS design process. 

To build constellations on explicit requirements of 

decisional users is not the best way because this assumes 

that users are skilled enough to forecast and clearly 

specify their needs, relatively complex, at the early stage 

of the decisional system design process. In practice, this 

is not easy since; in general, decision-makers are not 

only inexperienced for this task, but they are also 

unqualified for it. In addition, even if decision-makers 

can specify their needs in advance, the constellation built 

on the specified requirements may not be loadable from 

the target operational system. This problem is specific to 

top-down design methods. 

 

A second way to build constellations can be by 

examining star schemes issued from the DSS design 

process, and then by merging those schemes with 

common dimensions. Unfortunately, this method raises 

several semantic problems: homonyms, synonyms, etc. 

For instance, two dimensions common to two different 

stars may have the same name but different meanings. 

Such semantic problems may also occur with fact names 

and attributes of dimensions  

Consequently, we consider these two methods not very 

interesting because of their disadvantages listed above. 

Therefore, we seek a simple and effective one; the 

remainder of this paper addresses the following method.  

A third way to build constellations is from scratch, i.e., 

directly on the OLTP (On Line Transaction Processing) 

system by identifying which objects (e.g., entities, 

relationships) of the data source model (e.g., E/R 

diagram, relational schema) could derive correlated 

facts. Among the goals of this work, we show that 

constellation can be automatically built by applying a set 

of identification/construction rules on the data model 

describing the operational information system.  

This paper proposes our method to build constellations 

over a relational data source. It is organized in four 

sections. Section 2 introduces our basic idea to construct 

constellation based on the definition of parallel-relations.  

Section 3 details our proposed method of constellation 

construction; it defines a set of rules to build 

constellations, dimensions and their hierarchies. Section 

4 summarizes the paper and outlines some perspectives. 

 

2. CONSTELLATION CONSTRUCT 

BASICS 
 

As mentioned in the introduction, we want to identify 

and build constellation schemes by examining the 

database data model of the operational information 

system. We base this work on the two following 

observations: (i) In data warehouse design approaches it 

has been unanimously accepted that a business activity 

(e.g. Sales Bill) is generally modeled as an association 

linking several entities; and (ii) the connected entities to 

this association (e.g. Items, Client…) represent the 

context of that activity. These two observations incite to 

limit the construction of: 

–  facts mainly on n-ary relationships [15], [12], [5], [23] 

and rarely on entities [19], [3], [20], [8], and  

– dimensions on entities [12], [5], [19], [23] and 

sometimes on temporal attributes. 

For instance, in this context, Moody [19] bases the DM 

construction on a classification of the concepts of an E/R 

diagram into transaction entities, component entities and 

classification entities. This classification helps the 

designer in DW construction. 

 

On the other hand, we can find in operational systems 

two relationships that have a common subset of their 

linked entities; these relationships are said parallel. 

Figure 1-a shows that relationship GATHER_STUD is 

parallel to relationship HAVE_GRP because they share 

two entities: ACAD_YEAR and COURSE.  

Parallel relationships represent two activities of the 

business and, they share a common sub-context; so they 

are partially dependent. This inspires us to build 

constellations on the basis of parallel relationships. We 

borrow this concept of parallel-relationships from the 

E/R model [22]. In an E/R diagram, a relationship R1 

related to m entities is said to be parallel to a relationship 

R2 related to n (m≤n) entities if all entities connected to 
R1 are also connected to R2. Because we assume that our 

data source is a relational database, we adapt parallel 

relationships to the context of the relational model.  
 

1,n

0,n

0,n

0,n

0,n
ACAD_YEAR

ACAD_YEAR

COURSE

CORS_ID

CORS_NAME

CORS_NBR_HR

TEACHING_TYPE

TEACHING_TYP
HAVE_GRP

NBR_GRP

GATHER_STUD

NBR_STUD

1,n

0,n

0,n

0,n

0,n
ACAD_YEAR

ACAD_YEAR

COURSE

CORS_ID

CORS_NAME

CORS_NBR_HR

TEACHING_TYPE

TEACHING_TYP
HAVE_GRP

NBR_GRP

GATHER_STUD

NBR_STUD

 

(a) 

GATHER_STUD (Acad_Year, Cors_Id # : Course, Nbr_Stud) 

HAVE_GRP (Acad_Year, Cors_Idt# : Course, Teaching_Typ, 

Nbr_Grp) 

COURSE (Cors_Id, Cors_Name, Cors_Nbr_Hr,…) 

(b) 

 
FIGURE 1: EXAMPLE OF PARALLEL RELATIONSHIPS (a) AND 

THEIR RELATIONAL SCHEMA (b) 

 

ACIT 2007, 26-28 November 2007, Lattakia, Syria 2



 

Thus, in case of relation R1 parallel to relation R2 and 

according to the above considerations, we propose to 

build a two-fact constellation schema whose facts are 

derived from R1 and R2, and the set of shared 

dimensions is derived from entities simultaneously 

connected to R1 and R2. 

 

As this work extends our running approach of data mart 

schema construction [10], it continues to extract 

dimensional concepts (facts, measures, dimensions and 

attributes) directly from the relational database of the 

operational system. We have argued in [10] the 

motivations behind our orientation of working on 

relational databases; the main benefits are the 

availability, in the DBMS, of the most recent version of 

the operational system data model on the one hand 

(Mazón recently confirms this in [18]) and, the 

automation of the design process on the other hand.  

 

As we assume that our data source is a relational 

database, we have to adapt parallel relationships to the 

context of the relational model. The matter is that the 

relational model [7] uses a single concept to model both 

entities and relationships; therefore we lost, in a 

relational database, the conceptual trace to distinguish 

which relation represents an entity and which relation is 

a relationship. So, how to identify parallel relationships 

in a relational database? To answer this question, we 

perform a reverse engineering task by accurately 

examining the structure of relations; first to determine 

the conceptual class of a relation, i.e. decide whether a 

relation implements an entity or a relationship and, 

secondly, to look for parallel relationships within the 

subset of relations classified as relationships. 

 

2.1. IDENTIFICATION OF THE CONCEPTUAL 

CLASS OF A RELATION 

 

Let S be a relational database schema for a given 

operational information system (IS), we split relations of 

S into two subsets:  

– Sr: the subset of relations from S modeling 

relationships; we suggest designate them relation-

relationships (R-r for short). Generally, each R-r is 

known by its primary key composed of one or several 

foreign keys. 

–  Se: the subset of relations from S modeling entities; 

we call them relation-entity (R-e for short). Generally, 

each R-e is known by its primary key not containing a 

foreign key. 

 

We have pointed out in [10] that this classification 

should well form the two subsets Sr and Se; to do so, it 

should satisfy the following three properties:   

i) Disjoint: Sr ∩ Se=∅ , ii) Completeness: Sr ∪ Se = 
S,  and iii) Correctness: ∀ sr ∈ Sr, sr is not an entity 
and, ∀ se ∈ Se, se is not a relationship. 

 

The first two properties are trivial; however, the 

correctness property is not satisfied in the two following 

situations: i) when the primary key of a relationship is 

not the concatenation of all its foreign keys: this primary 

key can be an artificial attribute such as a sequential 

number; or ii) when the primary key of a relationship is 

the concatenation of attributes coming from empty 

entities: such attributes are never foreign keys since an 

empty entity never transforms into a relation. The reader, 

if interested in empty entities, is referred to [13] where a 

detailed example is given. 

 

2.2. A SAMPLE RELATIONAL DATA SOURCE 

 

In order to illustrate our method of constellation 

construction, we consider the relational database of 

figure 2; it models university professors’ loads (teaching 

courses and supervising students’ projects). In this 

schema, primary keys are underlined and, foreign keys 

are followed by the sharp sign (#) and the name of 

referenced relation. 

 

3. CONSTELLATION CONSTRUCTION 

METHOD 
 

Our constellation construction method starts by 

identifying the conceptual class of each relation in the 

source database. Afterward, to design one constellation 

based on two relations R1 parallel to R2 with m relations 

simultaneously referred to by R1 and R2, we create two 

facts conventionally called F-R1 and F-R2 (built on R1 

and R2 respectively). To complete these facts we extract 

their measures from parallel-relations themselves. After 

that, we determine the common dimensions issued from 

the m relations and then, construct hierarchies of 

dimensions. In a next step, we look for specific 

dimensions and their attributes. Following the foreign 

key links, we obtain dimensional attributes organized in 

hierarchies. Finally, the result is a two-fact constellation. 

 

Applying our method to the sample relational database 

of figure 2, we obtain the two subsets: Se and Sr depicted 

in figure 3-(a) and figure 3-(b) respectively. 

 

Note that by analogy with parallel-relationship in an E/R 

diagram, we introduce in the relational context the term 

parallel-relation to denote a relation representing a 

parallel-relationship; therefore, a parallel-relation is 

necessarily of class Sr. 

ACIT 2007, 26-28 November 2007, Lattakia, Syria 3



 

CURRICULUM (Cur_Id, Cur_Name,…) 

AUDIENCE (Aud_Id, Aud_Name, Level_of_Study, Cur_Id# : Curriculum) 

STUDENT (Stud_Id, Stud_Fname, Stud_Lname,…) 
COURSE (Cors_Id, Aud_Id # : Audience, Cors_Name, Cors_Nbr_Hr,…) 

PROFESSOR (Prof_Id, Prof_Fname, Prof_Lname, Telphone, Mobile, E_Mail, Prof_Typ, Prof_ Grad) 

ENROLLED_IN (Aud_Id # : Audience, Stud_Id# : Student, Acad_Year) 

CAN_TEACH (Prof_Id # : Professor, Teaching_Typ, Cors_Id# : Course) 

SUPERVISE (Prof_Id # : Professor, GroupNo, Acad_Year) 

SUB_GROUP (Stud_Id # : Student, Acad_Year, GroupNo, SubGroupNo) 

HAVE_GRP (Acad_Year, Cors_Id # : Course, Teaching_Typ, Nbr_Grp) 

CONTAIN_HOUR (Cors_Id # : Course, Teaching_Typ, Nb_Hr) 

GATHER_STUD (An_Univ, Cors_Id # : Course, Nbr_Stud) 

PROF_REALIZED _TEACHING (Cors_Id # : Course, Prof_Id # : Professor, Week_No, Teaching_Typ, Acad_Year, 

Nbr_Grp_Taught) 
PROF _REQUIRED_LOAD (Teaching_Typ, Prof_Qualif, Hr_Load_Req) 

PROF_REALIZED_SUPERVISING (Cur_Id # : Curriculum, Prof_Id # : Professor, SemesterNo, Acad_Year, 

Superv_Real) 
SCHEDULE (Sch_Date, SemesterNo, Cors_Id # : Course) 

 

FIGURE 2: S RELATIONAL DATABASE SCHEMA OF UNIVERSITY PROFESSORS’ LOADS 

 

 

 

 

 

 

 

 
 

(a)      (b) 
 

FIGURE 3: RELATIONS FROM SOURCE S CLASSIFIED INTO 

ENTITIES (a) AND RELATIONSHIPS (b) 

 

Moreover, in order to accurately formalize our 

extraction rules for multidimensional concepts, the 

remainder of this paper uses the notations below: 

– S: a relational database schema checked for third 

normal form, 

– R: a relation from S, 

– ΩR: the set of all attributes of R, 

– ΩR/NUM: the subset of numeric attributes from ΩR, 

– ΩR/BOL: the subset of Boolean attributes from ΩR, 

– ΩR/TEM: the subset of temporal (date or time) attributes 

from ΩR, 

– PkR: the set of attributes constituting the primary of R 

(PkR  ⊆ ΩR) and, 

– FkR: the set of attributes constituting all foreign keys of 

R (FkR ⊆ ΩR); FkR may be empty.  

 

3.1.   IDENTIFICATION OF PARALLEL 

RELATIONS 

 

Remember that parallel-relations correspond to parallel 

relationships in an E/R diagram. Therefore, to optimize 

their retrieval, we search them among relations of class 

Sr by using the following rule. 

 

Rule 1. Parallel relation: Given R1 and R2 two 

relations of the same class Sr such as R1 and R2 connect 

m and n (m≤ n) relations respectively, R1 is said to be 
parallel to R2 (noted R1//R2) if and only if the primary 

key of R1 is included in or equal to the primary key of 

R2.  
 

Example: In figure 1-b, the two relations 

GATHER_STUD and HAVE_GRP model two 

relationships since they belong to Sr (cf. figure 3-b); 

also, and in accordance with our Rule 1, the relation 

GATHER_STUD is parallel to the relation HAVE_GRP 

since the primary key of the first one is included in the 

primary key of the second. 
 

Formalization: According to our notation above, we 

formalize rule 1 as follows: 

2//1212 1 RRRPkRPkSrRSrRGiven ⇒⊆∧∈∧∈  

For our running example of figure 2, this rule identifies 

within the set Sr (figure 3-b) all pairs of parallel 

relations. Figure 4 depicts the graph of these parallel-

relations. 

relation

R1   R2 : R1//R2

GATHER_STUDGATHER_STUD

HAVE_GRPHAVE_GRP

PROF_REALIZED _TEACHINGPROF_REALIZED _TEACHING

CONTAIN_HOURCONTAIN_HOUR

Legend

 
 

FIGURE 4: GRAPH OF PARALLEL RELATIONS RETRIEVED 

FROM SOURCE S 

ENROLLED_IN 

CAN_TEACH 

SUPERVISE 

SUB_GROUP 

HAVE_GRP 

CONTAIN_HOUR 

PROF_REALIZED_TEACHING 

GATHER_STUD 

CURRICULUM 

AUDIENCE 

STUDENT 

COURSE 

PROFESSOR 

PROF _REQUIRED_LOAD 

PROF_REALIZED_SUPERVISING 

SCHEDULE 

ACIT 2007, 26-28 November 2007, Lattakia, Syria 4



 

3.2. IDENTIFICATION OF CONSTELLATION 

FACTS 

 

As shown in figure 4, parallel-relations probably form a 

graph with n (n≥2) nodes. This raises a matter; which 

nodes (i.e., parallel-relations) are most interesting for 

constellation construction. We estimate that defining a 

metric on the number of common dimensions may help 

the designer to decide which parallel-relations are most 

significant for their business. In the remainder, we focus 

on how to build constellation on a single pair of parallel-

relations. For this, we define the rule below. 

 

Rule 2. Constellation facts: Given R1 parallel to R2, 

each containing a non key, numeric attribute, we build a 

constellation schema composed of two facts 

conventionally named F-R1 and F-R2. 

Note that the condition “non key numeric attribute” 

improves rule 2 in that it excludes facts without 

measures; considered as infrequent facts.   

 

Formalization: According to our notation, every pair 

R1, R2 of relations verifying the following conditions 

form a two-fact constellation noted Const(F-R1, F-R2): 

( )
( )

( )2- ,1-

⇒≠ ∪- Ω

∧≠∪ -Ω∧2//1

22/2

11/1

RFRFConst

φFkPk

φFkPkRR

RRNUMR

RRNUMR

 

For our running example (cf. figure 4), we can build up 

to five two-fact constellations; naturally, not all of them 

have the same importance for OLAP analyses.  

 

3.3.  IDENTIFICATION OF MEASURES OF 

CONSTELLATION  

 

A fact contains a finite set of measures, generally 

numerical [9]. These measures are extracted from the 

fact-relation (i.e., relation on which the fact is built). The 

following rule extracts measures for a fact. 

 

Rule Hm1: Constellation measures. Non key numerical 

attributes belonging to a relation R building a fact F-R 

and, not belonging to other relations are candidate 

measures for F-R.  

 

This rule excludes key-attributes from the set of 

candidate measures because keys are generally artificial 

and redundant data; moreover, keys do not trace/record 

the enterprise business activity. Also, we exclude from R 

its ‘non key attributes belonging to other relations’ 

because these attributes really represent keys issued from 

empty entities. 

 

Formalization: According to our notation, the set of 

candidate measures for a given fact F-R, built on relation 

R, is defined by: 

 





















≠
∧∈

∪∪−Ω ΩU

RRj
SRj

RjRFkRPkNUMR /
 

 

Figure 5 shows measures extracted using our rule Hm1 

for all facts of figure 4. The first two rows are measures 

for the facts of the constellation under construction 

Const(F-GATHER_STUD, F-HAVE_GRP). 

 
Fact name Extracted measure 

F-GATHER_STUD  NBR_STUD  

F-HAVE_GRP NBR_GRP 

F-CONTAIN_HOUR NB_HR 

F-PROF_REALIZED_SUPERVISING NBR_GRP_TAUGHT 

 
FIGURE 5: CANDIDATE MEASURES FOR THE FACTS OF 

FIGURE 4 
 

3.4.   IDENTIFICATION OF CONSTELLATION 

DIMENSIONS 

 

In general, a dimension can be established on entity 

directly linked to a relationship. Also, we can build 

dimensions on attributes or even on empty entities. We 

have precisely studied these issues in [13] for star 

schema dimension construction. The rules we have 

established remain applicable for constellation 

dimension construction. 

 

a) DIMENSION BUILT ON AN ENTITY 

 

For a constellation Const(F-R1, F-R2), we find a non 

empty set of dimensions common to facts F-R1 and F-R2 

and then, for each of these facts we determine a set of 

specific dimensions. The first set is mainly built on the 

common relations connected simultaneously to R1 and 

R2; whereas the second set is built on relations linked to 

R2 but not to R1. The following rule finds dimensions 

for a constellation schema. It is useful to determine the 

set of dimensions common to both facts and also, to 

determine the dimensions specific for the fact established 

on relation R2. 

 

Rule Hd1: Every relation-entity R directly referred to by 

a fact-relation F is a candidate dimension for F. 

Conventionally, the name of this dimension is that of R 

and its identifier is the primary key of R. 

 

ACIT 2007, 26-28 November 2007, Lattakia, Syria 5



 

Example: According to rule Hd1 relation COURSE is 

directly referred to by the fact-relation HAVE_GRP; 

therefore, it is a dimension for the fact F-HAVE_GRP 

with CORS_ID as its identifier. 

 

Formalization: 

{ }φ≠∩∈ 1::1 RFkRPkSeRHd ; where PkR is the 

identifier of dimension built on R. 

 

In the next sections, we call dimension-relation a 

relation identified as a dimension. 

 

b) DIMENSION BUILT ON AN ATTRIBUTE  

 

In addition to dimensions built on relations, we can 

define a dimension on an attribute of a special data type 

(Boolean, temporal) or, even on an attribute issued from 

an empty entity. We first give the corresponding rules 

and then, we apply our rules to the relational data source 

of our example. Naturally, a Boolean column splits data-

rows of its table into two subsets; thus such an 

attribute can be an axis of analysis. As an example, a 

Gender column in a Student database table can build a 

dimension. 

 

Rule Hd2: A Boolean attribute b belonging to a fact-

relation F generates a candidate dimension for F. The 

identifier of that dimension is b. 

 

On the other hand, the data warehouse community 

assumed a data warehouse as a chronological collection 

of data [17]. Consequently, the Date dimension appears 

in all data warehouses. For this reason, we propose to 

build dimensions on temporal attributes. As an example, 

the Booking date attribute in an aircraft reservation 

database may interest decision-makers as an axis of 

analyses for the Booking activity of the company [2]. 

Considering this, we define the following rule. 

 

Rule Hd3: A temporal attribute (date or time) belonging 

to a fact-relation F timestamps the fact built on F; it 

generates a candidate dimension for F where it is the 

identifier. 

In addition, the following two rules establish dimensions 

on the basis of attributes denoting empty entities. 

 

Rule Hd4: Given F a fact-relation of class R-r; if the 

primary key of F contains a non foreign key attribute a, 

then attribute a generates one dimension identified by a. 

 

Example: The attribute TEACHING_TYP that 

represents the empty entity TEACHING_TYPE (cf. 

figure 1) is identified as a dimension for fact F-

HAVE_GRP.  

Rule Hd5: Every non key (primary of foreign) attribute 

a belonging to a fact-relation F and belonging to other 

relations becomes a dimension for fact F. The dimension 

identifier is a. 

 

Formalization: Given R1 a fact-relation belonging to a 

data source S, the set of all its candidate dimensions is 

the union of the following sets obtained by the above 

rules.  

Note that when we build a dimension on attribute a (e.g. 

Gender) we assign the name D_a to that dimension (e.g. 

D_Gender). The identifier of dimension D_a is attribute 

a (i.e., Gender). 

{ }φ≠∩∈ 1::1 RFkRPkSeRHd  ; where PkR, is the 

identifier of dimension built on R. 

 

{ }U
BOLR

a

aDHd

/1

_:2

Ω∈
;        { }U

TEMR
a

aDHd

/1

_:3

Ω∈
; 

 

{ };
)(

_:4

11

U
RR

FkPka

aDHd

−∈
 

 

{ } ( ){ }
( )

;1:_:5

111

111U
RRR FkPka

RRR RFkPkRSRaDHd
∪−Ω∈

⊆∪−Ω−∈∃ ∧  

Example: For the relational database of our example, 

these rules produce dimensions shown in figure 6. 

 

3.5. IDENTIFICATION OF HIERARCHES 

 

In multidimensional modelling, the attributes of a 

dimension are ordered from the lowest to the highest 

granularity to form candidate hierarchies [21]; such 

ordered attributes are said parameters. In addition, any 

hierarchy of a dimension d has the identifier of d as its 

finest parameter (i.e., of rank 1) already extracted with d. 

This identifier can functionally determine some attributes 

within its correspondent relation; these attributes 

describe the identifier and, therefore, can play the role of 

descriptive (or non dimensional) attributes. Among 

these, the textual attributes are more significant than the 

numerical ones. Due to space limitation, the rules for 

hierarchy construction are not detailed here (cf. [10]); we 

limit ourselves to give the result of their application on 

our example. 

Figure 7 depicts two constellations represented 

according to DFM [12] notation; they are built on two 

pairs of parallel-relations issued from the relational 

database of figure 2. For instance, the hierarchy of the 

dimension COURSE has three parameters (shadowed 

ACIT 2007, 26-28 November 2007, Lattakia, Syria 6



 

circles) and four descriptive attributes. All of them are 

extracted from relations COURSE, AUDIENCE and 

CURRICULUM by exploring the foreign key 

constraints.  

Finally, note that all the elements of  an obtained 

multidimensional schema are  extracted and carried 

forward with their corresponding attachment to the  data 

source ; this allows the designer to rename these 

elements more significantly without losing the origin in 

the source. This deals with implementation, an 

immediate step for this work. 

 

Fact name Extracted Dimension Dimension Identifier Extraction Rule 

F-HAVE_GRP 

COURSE Cors_Id Hd1 

D_ACAD_YEAR Acad_Year 
Hd4 

D_TEACHING_TYP Teaching_Typ 

F- CONTAIN_HOUR 
COURSE Cors_Id Hd1 

D_TEACHING_TYP Teaching_Typ Hd4 

F- GATHER_STUD 
COURSE Cors_Id Hd1 

D_ACAD_YEAR Acad_Year Hd4 

F- PROF_REALIZED _TEACHING 
COURSE Cors_Id 

Hd1 
PROFESSOR Prof_Id 

D_SEMESTERNO SemesterNo Hd4 
 

FIGURE 6: CANDIDATE DIMENSIONS FOR THE FACTS ISSUED FROM SOURCE S 
 

D_TEACHING_TYP

TEACHING_TYP

D_ACAD_YEAR

ACAD_YEAR

COURSE

AUD_ID

CORS_ID

CUR_ID

CUR_NAME

AUD_NAME

NUM_CYCLE

CORS_NAME

NBR_GRP

F-HAVE_GRP

NBR_STUD

F-GATHER_STUD

D_TEACHING_TYP

TEACHING_TYP

D_TEACHING_TYP

TEACHING_TYP

D_ACAD_YEAR

ACAD_YEAR

D_ACAD_YEAR

ACAD_YEAR

COURSE

AUD_ID

CORS_ID

CUR_ID

CUR_NAME

AUD_NAME

NUM_CYCLE

CORS_NAME

NBR_GRP

F-HAVE_GRP

NBR_STUD

F-GATHER_STUD

 
 

PROFESSOR

PROF_ID

PROF_FNAME

PROF_LNAME

PROF_TYP

E_MAIL

PROF_ GRAD

D_ACAD_YEAR

ACAD_YEAR

D_SEMESTERNO

SEMESTERNO

NB_HR

NBR_GRP

F-CONTAIN_HOUR

F-ENSEIGNEMENT_ASSURE

NBR_GRP_TAUGHT

F-PROF_REALIZED _TEACHING 

COURSE 
AU
D_
ID

CO
RS
_I
D

CU
R_
ID

CUR_NAME

AUD_NAME

NUM_CYCLE
CORS_NAME

D_TEACHING_TYP

TEACHING_TYP

PROFESSOR

PROF_ID

PROF_FNAME

PROF_LNAME

PROF_TYP

E_MAIL

PROF_ GRAD

D_ACAD_YEAR

ACAD_YEAR

D_SEMESTERNO

SEMESTERNO

NB_HR

NBR_GRP

F-CONTAIN_HOUR

F-ENSEIGNEMENT_ASSURE

NBR_GRP_TAUGHT

F-PROF_REALIZED _TEACHING 

COURSE 
AU
D_
ID

CO
RS
_I
D

CU
R_
ID

CUR_NAME

AUD_NAME

NUM_CYCLE
CORS_NAME

D_TEACHING_TYP

TEACHING_TYP

 

FIGURE 7: TWO CONSTELLATIONS BUILT ON TWO PAIRS OF PARALLEL RELATIONS  

 

4. SUMMARY AND FUTURE 

EXTENSIONS 

 

The context of this work is the design of data mart 

schemes. Our design method aims to assist the designer 

to define the structure of the data mart on the basis of the 

enterprise operational system. This system is modeled as 

a relational database. More precisely, our contribution 

addressed the problem of construction of constellation 

schemes. For this, we defined the concept of parallel 

relationships as relationships describing two dependent 

activities of the business and, sharing a common context. 

Also, we have argued that parallel relationships are 

ACIT 2007, 26-28 November 2007, Lattakia, Syria 7



 

significant to build consistent constellation schemes 

useful to enhance transversal, decisional analyses. These 

analyses allow understanding dependencies between the 

enterprise activities and, therefore, better explain 

business results (e.g., sales). For our constellation 

construction method we defined a set of rules and, we 

illustrated their use through a concrete example. Our 

rules extract facts and their measures; also, they 

determine dimensions and their attributes organized into 

hierarchies. So far, our method has built constellations 

limited to two facts; however, in practice, we may need 

multiple fact constellations; therefore we need to decide 

what facts are to be constellated? What is the 'best' 

combination? … For the short term, we plan to extend 

this work by defining a metric that helps the decisional 

designer during the constellation process. In addition, 

since constraints in multidimensional systems began to 

intensively interest the DW community, we envision 

detecting implicitly some constraints at the 

multidimensional schema construction phase; it is to 

enhance the quality of data to be loaded in the DM. 
 

REFERENCES 
 

[1] Blaschka M., “FIESTA: A Framework for Schema 

Evolution in Multidimensional Databases”, Ph. D. 

thesis, Institut für Informatik der Technischen 

Universität München, December  2000. 

[2] Böhnlein M., Ulbrich-vom Ende A., “Deriving 

Initial Data Warehouse Structures from the 

Conceptual Data Models of the Underlying 

Operational Information Systems”, 1999. 

[3] Bonifati A., Cattaneo F., Ceri S., Fuggetta A. and 

Paraboschi S., “Designing Data Marts for Data 

Warehouse”, ACM Transaction on Software 

Engineering and Methodology, vol. 10, pp. 452-

483, Octobre 2001. 

[4] Boussaid, O., “Evolution de l'entreposage des 

données complexes”, Memoire de HDR, université 

lumière Lyon2, 2006. 

[5] Cabibbo, L., and Torlone, R., “A Logical Approach 

to Multidimensional Databases”, Conference on 

Extended Database Technology, Valencia-Spain, 

pp. 187-197, 1998. 

[6] Calvanese, D., Dragone, L., Nardi, D., Rosati R. 

and Trisolini, S., “Enterprise modeling and Data 

Warehousing in Telecom Italia”, Information. 

Systems. 31(1), 2006.  

[7] Codd, E.F. “A Relational Model of Data for Large 

Data Banks”, ACM Communications, Vol. 13, No 

6, pp 377-387, 1970. 

[8] Ghozzi, F., “Conception et manipulation des bases 

de données dimensionnelles à contraintes”, Thèse 

de Doctorat, Univ. Paul Sabatier, France, 2004. 

[9] Feki, J. and Ben-Abdallah, H., “Multidimensional 

Pattern Construction and Logical Reuse for the 

Design of Data Marts”, International Review on 

Computers and Software (IRECOS), Mars 2007. 

[10] Feki, J. and Hachaichi Y., “Du relationnel au 

multidimensionnel : Conception de magasins de 

données”, Revue RNTI vol B-3, p 5-19, 2007. 

[11] Golfarelli M., Maio D., and Rizzi, S., “Conceptual 

Design of Data Warehouses from E/R Schemas”, 

Conference on System Sciences, Kona-Hawaii, 

1998, Vol. VII. 

[12] Golfarelli, M., Maio, D. and Rizzi, S., “The 

dimensional fact model: a conceptual model for 

data warehouses”, Int. Journal of Cooperative 

Information Systems, pp.215-247, 1998. 

[13] Hachaichi, Y. and Feki J., “Heuristiques de 

construction de MD à partir d'une source OLTP 

relationnelle”, Atelier des Systèmes Décisionnels 

(ASD’06), Agadir-Maroc, 2006. 

[14] Hüsemann, B., Lechtenbörger, J. and Vossen, G., 

“Conceptual Data Warehouse Design”, Proc. of the 

Int’l Workshop on Design and Management of 

Data Warehouses, Stockholm-Sweden, pp. 6.1-

6.11, 2000. 

[15] [Kimball, 1997] Kimball R., “A Dimensional 

Modeling Manifesto”, DBMS Magazine, Juillet, 

1997. 

[16] Kimball R., “The Data Warehouse Toolkit”, John 

Wiley and Sons Inc, 1997. 

[17] Kimball R., Revues L., Ross M., Thornthwaite W. 

“Le data warehouse: Guide de conduite de projet”, 

Eyrolles, 2005. 

[18] Mazón J.-N. and Trujillo J., “An MDA approach 

for the development of data warehouses”, 

Decisional Support System., 2007. 

[19] Moody L.D., and Kortink M.A.R., “From 

Enterprise Models to Dimensional Models: A 

Methodology for Data Warehouses and Data Mart 

Design”, Proc. of the Int’l Workshop on Design 

and Management of Data Warehouses, Stockholm-

Sweden, 2000. 

[20] Phipps C. and Davis K., “Automating data 

warehouse conceptual schema design and 

evaluation”, DMDW'02, Canada, 2002. 

[21] Ravat, F., Teste, O., Zurfluh, G., “Modélisation 

multidimensionnelle des systèmes décisionnels”, 

Revue ECA, vol. 1, n° 1-2, 1999, p.201-212. 

[22] Seba D., Merise - Concepts et mise en œuvre, 

Eni,edition 2003. 

[23] Soussi A., Feki J., Gargouri F., “Approche semi-

automatisée de conception de schémas 

multidimensionnels valides”, Revue RNTI vol B-1, 

p71-90, 2005. 

ACIT 2007, 26-28 November 2007, Lattakia, Syria 8




