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Abstracat: Convolutional neural network (CNN) is a well-known robust image recognition model. 

It is a multi-layer architecture where the successive layers are designed to learn progressively 

higher-level features, until the last layer which produces categories.  In order to apply this model to 

robot vision or various intelligent systems, its VLSI implementation with high performance is 

required. In this paper, a hardware implementation of one of the most complex and powerful 

image recognition convolutional neural networks(the neocognitron) has been considered. The 

original neocognitron has been modified to reduce its complexity whether it is hardwarely or 

softwarely implemented while its principle working ideas has been kept. As a result to these 

modifications and simplifications, a relatively small FPGA hardware model of 200,000 gates has 

been used to implement a relatively complex design. The system is tested by using the Optical 

Recognition Library(ORL) face database for face recognition problem and its performance is 

compared with the results obtained using advanced software system designed specifically for face 

recognition. The recognition rate achieved from both software and hardware versions were equal 

to 93%. A speed up of (88) is achieved for the parallel architecture implemented in an FPGA as 

compared with the computer software. Also a performance of 1GCPS is achieved and seems 

reasonable when it is compared to the today available neuro-hardwares[1].  

 

Keywords: Convolutional neural network implementation, neocognitron, neural hardware 

implementation.  

 

 

1  Introduction 
Convolutional neural networks(CNN) 

with local weight sharing topology gained 

considerable intrest both in the field of speech and 

image analysis. Their topology is more similar to 

biological networks based on receptive fields and 

improves tolerance to local distortions. Additionally, 

the model complexity and the number of the weights 

are efficiently reduced by weight sharing. This is an 

advantage when images with high-dimensional input 

vectors are to be presented directly to the network 

instead of explicit feature extraction that results in 

reduction which is usually applied before 

classification. Weight sharing can also be considered 

as alternative to weight elimination in order to reduce 

the number of the weights. Moreover, networks with 

local topology can more effectively be migrated to a 

locally connected parallel computer than fully 

connected feedforwared network [2].  

In this paper, the neocognitron 

convolutional network structure which will be used 

as a target model and will be hardwarely 

implemented. 

 

2  Neocognitron  
Fukushima [3] was amongst the first to 

experiment with convolutional neural networks and 

obtained good results for character recognition by 

applying convolutional neural networks within an 

image pyramid architecture: processing layers 

alternate between convolution and sub-sampling. 

This architecture is called Neocognitron. This 

multi-scale architecture has been now widely 

adopted and appears to provide a robust 

representation in many object recognition 

problems. A practical architecture of the 

Neocognitron is shown in Fig. 1(a). 
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Each layer extracts certain shape-features, as for 

example edge orientation, from a localized 

region of the preceding layer and projects the 

extracted information to the next higher layer. 

The complexity and abstractness of the detected 

features grow with the layer height, until 

complicated objects can be recognized. A layer 

consists of a number of feature planes, each of 

which is assigned to recognize one specific 

image feature. 

Neurons belonging to the same plane 

are identical in the sense that they share the same 

synaptic weights. This architecture, showing a 

high degree of self-similarity, seems particularly 

dedicated to be implemented on a parallel 

hardware platform. 

For simplicity, another illustration of 

the Neocognitron when the feature planes are 

arranged serially and the receptive fields are 

represented as circles is shown in Fig.1(b). Note 

that the modified neocognitron(MNEO) is 

proposed and implemented in this paper. 

The neocognitron consists of a cascade 

connection of a number of modular structures 

preceded by an input layer Uo. Each of the 

modular structures is composed of two sub-

layers of cells, namely a sub-layer Us consisting 

of S-cells, and a sub-layer Uc consisting of C-

cell (S-cells and C-cells are named after simple 

cells and complex cells in physiological terms, 

respectively). Regard to CNN cells and layers 

names, S-cells refer to cells in convolution layers 

whereas C-cells refer to cells in down-sampling 

layers.  In the Neocognitron, only the input 

interconnections to S-cells are variable and 

modifiable and in contrast to the down-sampling 

layers in CNN, the input interconnections to C-

cells are fixed and unmodifiable. 

 

2.1 Cells Employed In the Neocognitron 

All the cells employed in the neocognitron 

are of analogue type: i.e, the input and output 

signals of the cells have non-negative analoge 

values. Each cell has characteristics analogous to a 

biological neuron. In the Neocognitron, it is used 

four different kinds of cells, i.e., S-cells, C-cells, 

Vs-cells and Vc-cells.  

An S-cell has a lot of input terminals, 

either excitatory or inhibitory. If the cell receives 

signals from excitatory input terminals, the output 

of the cell will increase. On the other hand, a signal 

from an inhibitory input terminal will suppress the 

output. Each input terminal has its own 

interconnecting coefficient whose value is positive. 

Although the cell has only one output terminal, it 

can send signals to a number of input terminals of 

other cells. 

An S-cell has an inhibitory input which 

causes a shunting effect. Let u(1), u(2),…….u(N) 

be the excitatory inputs and v be the inhibitory 

input.  

The output w of this S-cell is defined by[3]: 
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Figure 1:  (a)Neocognitron main layers and  receptive fields (b) Schematic diagram 

illustrating the structure of the Neocognitron. 
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where a(v) and b represent the excitatory and 

inhibitory interconnecting coefficients, 

respectively.  

The cells other than S-cells also have 

characteristics similar to those of S-cells. The 

input-to-output characteristics of a C-cell are 

obtained from the last equation if we replace φ[ ]  

by ψ[ ], where ψ[ ] is a saturation function defined 

by: 

 

 

The parameter α is a positive constant which 

determines the degree of saturation of the output. 

In the computer simulation and in hardware 

implementation discussed in section 5, the 

parameter α is chosen to be equal to zero. 

S-cells and C-cells are excitatory cells, 

i.e., the output terminals of these cells are 

connected only to excitatory input terminals of 

other cells. On the other hand, Vs-cells and Vc-

cells are inhibitory cells, whose output terminals 

are connected only to inhibitory input terminals of 

the other cells. A Vs-cell has only excitatory input 

terminals and the output of the cell is proportional 

to the sum of all the inputs weighted with the 

interconnecting coefficients. That is a Vs-cell 

yields an output proportional to the (weighted) 

arithmetic mean of its inputs. 

A Vc-cell also has only excitatory input 

terminals, but its output is proportional to the 

(weighted) root-mean-square of its input. Let u(1), 

u(2),…….u(N) be the inputs to a Vc-cell and 

c(1),c(2),…….c(N) be the interconnecting 

coefficients of its input terminals. The output  w of 

this Vc-cell is defined by: 

 

 

 

 

 

 

2.2  Formulae Governing the network 

 

S-cells have inhibitory inputs with a 

shunting mechanism. The output of an S-cell of the 

kl-th S-plane in the l-th module is given by [3] 

 

 

 

 

 

 

 

 φ[ ]             : a function defined by equation (1)    

vcl-1(n)          : Vc-cell,layer l-1, position n   

 al( ),bl( )      : modifiable weights  

 cl-1 ( )           :positive fixed weights  

  rol               :selectivity parameter 

  Sl                : receptive field 

 

The selectivity parameter rol  in the above 

equation controls the intensity of the inhibition. 

The larger the value of rol  is, the more selective 

becomes the cell's response to its specific feature. 

rol  is believed that it is a key factor to control the 

ability of the neocognitron to recognize deformed 

patterns. If the selectivity is too high, the 

neocognitron loses the ability to generalize and 

cannot recognize deformed patterns robustly. If the 

selectivity is too low, the neocognitron loses the 

ability to differentiate between similar patterns of 

different categories.  The values of fixed 

interconnections  cl-1 ( )  are determined so as to 

decrease monotonically with respect to |v|. The size 

of the  connecting area Sl of these cells is set to be 

small in the first module and to increase with 

respect to depth l. 

The interconnections from S-cell to C-cell 

are fixed and unmodifiable as mentioned. Each C-

cell has input interconnection leading from a group 

of S-cells in the S-plane preceding it (i.e., in the S-

plane with the same kl–number as that of the C-

cell). This means that all of the S-cells in the C-

cell's connecting area extract the same stimulus 

features but from slightly different positions on the 

input layer. The values of the interconnections are 

determined in such a way that the C-cell will be 

activated whenever at least one of these S-cells is 

active, hence, even if a stimulus pattern which has 

elicited a large response from the C-cell is shifted a 

little in position, the C-cell will still keep 

responding as before, because another neighboring 

S-cell in its connecting area will become active 

instead of the first. In other words, a C-cell 

responds to the same stimulus feature as the S-cell 
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preceding it, but is less sensitive to a shift in 

position of the stimulus feature. 

Quantitatively, the output of a C-cell of 

the kl-th C-plane in the l-th module is given by: 

 

 

 

 

 

 

 

 ψ[  ]   : a function defined by equation (2)             

vsl(n)         : Vs-cell,layer l, position n  

 dl(v)   : fixed interconnection which determined 

so as to decrease  monotonically with respect to 

|v| 

Dl        : receptive field, the size of Dl is set to be 

small in the first module and to increase with the 

depth of l 

 

3  The proposed Image Recognition 

Neural Network System 
The image recognition system described 

in this paper consists of a hierarchy of several 

layers of artificial neurons, arranged in planes to 

form layers. The system consists of two parts: 

feature extractor and classifier. The feature 

extractor operates on an input image, which are 

then processed by the classifier (see Fig. 1(b)). 

The neocognitron is used as a feature extractor. 

An image is divided by the feature extractor into 

subimages. The extraction of local features is 

based on the similarity among subimages. The 

feature extractor is usually trained by 

unsupervised training algorithm. The training is 

achieved sequentially layer by layer, and the 

output of each layer will be considered as the 

input of the next layer.  

The main role of the classifier is to 

relate the global features generated by the feature 

extractor (neocognitron) to the desired 

recognition code. The classifier is usually 

feedforward and fully connected. The classifier 

is usually trained by supervised training 

algorithm. If two images belonging to the same 

category of a traing set have different global 

features that result from the output of heighest 

Ucl sub-layer of the neocognitron, then, the 

classifier will associate these two different global 

features to the same recognition code. This is 

considered as the advantage of the classifier. 

It can be said that the Convolutional 

Image recognition system used in this paper is 

based on the original neocognitron but with some 

modifications and additional parts. This new 

structure is called MNEO to differentiate it from 

the original neocognitron (see Fig. 1(b)). 

 

4 Modification of the 

Neocognitron(MNEO) 
Since the layers of the neocognitron in 

this work are independently trained, therefor, there 

are several possibilities for combining different 

kinds of neurons and learning rules. One method is 

proposed in this work which uses Mc Culloch-Pitts 

[2] neurons in S-sublayers instead of using 

complicated neurons based on the original 

neocognitron. Also kohonen's topology preserving 

mapping algorithm is used for parameter 

adaptation[4]. In order to reduce the training time, 

only one representation map is trained and then 

copy its representations to create the layer’s planes. 

While the classifier discussed above is considered 

as an additional part for the original neocognitron. 

 

4.1 Simple Model of Neurons 

In contrast to the neocognitron, the 

network designed in this paper, the MNEO uses S-

neuron based on the Mc Culloch-Pitts model. 

Inhibitory cells are not used and consequently S-

sublayers can be easily trained by any training 

algorithm.  

Therefore, the output of an S-cell of the kl-

th S-plane in the  l-th module will be 

 

where: 

 

 

4.2  Learning algorithm of the MNEO 

As mentioned earlier, since the 

neocognitron is used for feature extraction, the 

unsupervised self-organizing learning algorithm 

(SOM) [4] can be used to develop the 

representations in the S-sublayer(s). The SOM 

algorithm requires initializing the map size before 

starting of the training. Learning occurs only in S-

sublayers. Essentially the algorithm modifies an 

unsupervised learning rule to cope with 

competition in a weight shared layer as follows: 

First after an input has been presented to 

the network, the most active node (i.e. the winning 

neuron) is determined, second, the S-neuron 

connections are updated by using kohonen’s rule. 

After learning has been completed, weight sharing 

is performed along the spatial to create the S-

planes that represent the S-sublayer. 
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After learning has been completed and 

S-planes have been created, the input image is 

projected through S-sublayer. For each 

overlapped spatial window (each subimage), the 

input vector is projected to each neuron in each 

S-plane at the same spatial coordinate, then the 

most active neuron among these planes is 

selected .The later operation determines which 

feature is included in that subimage. Then the 

other neurons are set to zeros. 

 

4.3 Complex Model of Neurons 

For the designed network  we do not 

care about the values and type of connections of  

C-cells to the input vector represented by the 

receptive field of the corresponding S-plane. As 

mentioned earlier to simplify the implementation 

of Ucl sub-layers, α is chosen to be zero. Since 

the inhibitory cells in the complex sublayer of 

the modified S-layer are not of use, therefore, the 

output of a C-cell of the kl-th C-plane in the l-th 

module will be:  
 

 

and ψ[ ] is defined as: 

 

 

5  CNN Hardware Implementation 
CNN benefit, greatly from the 

specialized implementation compared to the 

implementation for general purpose processor 

(GPP) . Parallel, distributed processing, seen in 

CNN architectures, are an attractive model for 

computation. This model is particularly suitable 

for hardware design for the following reasons: 

1. Inherent Parallel Processing: the final output 

of a network is a result of partial calculations 

performed by each node. 

2. Simple Processing Elements: each node of the 

network needs only be capable of solving part of 

a particular problem and therefore are relatively 

simple. 

3.  Modular architecture: nodes are usually 

homogeneous across the network leading to 

simple large-scale designs. 

4. Compact memory resources: the property of 

weights sharing enormously reduces the size for 

storage elements. 

In this paper parallel digital hardware 

implementation of the MNEO in FPGA platform 

is presented in details. 

 

 

5.1   Network parameters  

The size and parameters of the MNEO 

neural network is dependent on the application. 

Therefore, a specified application should be 

determined beforehand. In this paper, the most 

challenging problem in image recognition is 

considered, the face recognition, since face is a 

complex character and has a great deal of 

information.  

 

5.1.1 Image database 

A resolution of 32x32 pixels is sufficient 

for the task of face recognition since a face is 

primarily characterized by existence of eyes, nose 

and mouth together with their geometrical 

relationship all of which can be recognized at low 

spatial resolution [3]. The Optical Recognition 

Library(ORL) database [5], which has 10 different 

images of 40 distinct subjects is used in this work. 

The images are grayscaled with a resolution of 

92x112, but the resolution is reduced to 32x32. The 

influence of the resolution reduction in hardware 

field is to reduce the probability of FPGA 

overfitting, and to lower the information content 

that has to be learned by the networks and 

consequently reduce the required hardware 

resources. The designed network can classify 12 

out of the 40 subjects. The experiments were 

performed on five training images and five testing 

images per person. A total of 60 training images 

and 60 testing images are used to adjust the 

parameters which presented in the next section. 

The training is wholly implemented in software. 

 

5.1.2  Parameters Setting of the MNEO 

Parameters setting of the MNEO such as 

the choice of the number of layers, neurons, cell 

planes, and so on, is a complex process. In fact, 

this process requires a lot of ‘fine-tuning’ effort 

and can be obtained by multiple simulation run of 

networks with different parameters. Then the most 

precise network is selected and its parameters are 

adapted. This selection is based on the evaluation 

of the network with respect to the recognition rate. 

The network which to be implemented in this paper 

is depicted in Fig. 2. The network structure consists 

of five layers, first hidden layer is a simple layer of 

four convolutional planes. The second hidden layer 

is a complex layer of also four convolutional 

planes. The third and fourth hidden layers are 

simple and complex layers respectively, each is of 

16 convolutional planes. There are 12 output 

neurons in the last layer (fully connected 

feedforward layer), according to 12 different 

subjects (faces). Receptive fields sizes are chosen 

as 5x5, with 4 overlapped pixels(each field is 
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overlapped over another by four pixels in both 

horizontal and vertical directions). The features 

in the hidden layers are organized as (4x4)x4, 

with 2 overlapped pixels,(4x4)x4, with 3 

overlapped pixels,(4x4)x16, with 2 overlapped 

pixels, and (4x4)x16. 

 

5.1.2.1   Hardware implementation of the S-

cell   
In return to equation(6), the response of 

S-cell is simply a function of input vector 

x̂ (receptive field) and weight vector ŵ  which 

can be written as[2]: 

 

where:  .ˆˆ2ˆˆˆˆ
2222 wxwxwxd •−+=−=  

It can be seen from the above equation 

that the neuron response depends on the distance 

between x̂  and ŵ .Thus the smaller the distance 

between them, the greater the response of the 

neuron. Now considering that of one specific 

feature each receptive field has to be detected by 

a number of S-cells distributed over different 

plans. This means, the sigmoid activation 

functions defined in equation(6) for those S-cells 

(spatially localized cells) can be replaced by a 

competitive function. This function sets the cell 

that has a minimum distance for that receptive 

field and resets the other cells.  

The above calculation for the S-cell 

responses is softwarely achieved during the 

MNEO training phase. For the MNEO 

propagation phase, the same approach is used but 

achieved hardwarely. This ensures that the cell 

itself that is stimulated during the learning phase 

will also be stimulated during the propagation 

phase when the same input is applied. 

In this approach, since the value of the 

output cell is either '0' or '1', then only one 

storage element is required which simplifies the 

successive operations and their hardware. This is 

because there is no need to deal with real 

numbers that are usually produced from the 

sigmoid function. This simplification also plays a 

positive role when implementing the 

downsampling operation done by complex 

layers. 

The selection of the similarity measure 

is another factor that influences on the haradware 

implementation of the S-cell. Manhattan distance 

is used as a measure of similarity between x̂  

and ŵ . It measures the features that are detected 

by the S-cell either in training or in propagation 

phase. In particular, the Manhattan distance is used 

to avoid multiplications that are required in the 

calculation of Euclidean distance (the most critical 

operation in hardware). Also dot product between 

x̂  and ŵ  is avoided when using Manhattan 

distance. Manhattan distance is defined [6] as: 

 

It can be seen from the above equation 

that the implementation of Manhattan distance in 

hardware requires absoluter, subtractor, and 

accumulator.  

 

5.1.2.2   Hardware implementation of the C-cell   

As it is done in simplifying the hardware 

implementation of the S-cell by representing its 

output by only one bit, the same is done with the 

C-cell. From equation(2) it can be seen that if the 

parameter α is chosen equal to 0, the output of the 

C-cell will be either one or zero as shown in (8). 

Here, also reduction of storage elements and 

simplification of the hardware connected to the 

output of the C-cell are achieved. 

Depending on the representation of the S-

cell and the C-cell activation functions, the C-cell 

can be built by only using OR function as shown in   

Fig. 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The benefits from these representations not only 

influence on the implementation of simple and 

complex layers, but also they play an important and 

essential role for implementing the final layer of 

the MNEO(the fully connected feedforwared 

layer). 

 

5.1.2.3   Hardware implementation of the 

Feedforward-cell   
In feedforward layer, the dot product 

calculations among the weight vectors and the 

receptive field vectors of the last complex layer in 
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the MNEO require multiplications. But the 

mentioned modification of the MNEO network 

does not need this multiplication operation. 

Feedforward layer only needs accumulation 

operation and the number of required 

accumulators equals to the number of the 

feedforward cells. Each accumulator 

accumulates the scalar weight of a cell if its input 

is '1'. 

The equation for feedforward cell is:  

 

θ is the sigmoid transfer function, P is the cell 

output , xi and wi are the input and weight vectors 

respectively. For example assume the 

feedforward cell receives 3 weighted inputs as 

x̂ =(1,0,1) and its trained weights are 

ŵ=(0.98,0.13,0.22), then the accumulator 

produces (0.98+0.22) which equal to 1.2. Along 

with the accumulator, conditioning 

circuit(mainly AND gates) is used to select 

which value of ŵ vector is to be accumulated.   

To produce cell's output, activation 

function (θ) (sigmoid usually used in 

feedforward) should be implemented and as will 

be shown below, its implementation will require 

only one multiplication operation. Some transfer 

functions like sigmoid function (frequently used 

in the MLP model) need some modifications to 

simplify the hardware of the function. In this 

case, the sigmoid function has been substituted 

by a piecewise linear function like satlin function 

[7]. The substitution is based on the selection of 

a linear satlin equation that has a minimum least 

square error with the original sigmoid function 

(see Fig. 4). This is achieved in software, where 

the sigmoid equation that is used during the 

learning phase is approximated with a linear 

satlin function that best fit it, then the last 

function parameters are adapted. The algorithm 

used to implement the selected approximated 

function is described as following: 

 

 

if     x<= - th 

    out=0; 

elseif x>= +th 

    out=1; 

else 

    out=0.5*(1+(x*1/th)); 

end; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now, to implement the above algorithm, we need 

two multipliers and one adder. But if we simplify 

the linear equation to out=0.5+(x*0.5/th) then only 

one multiplier and one adder are required. 

Using one multiplier and one adder for 

each feedforward node may be seemed a critical 

problem if the number of output nodes exceeds the 

number of embedded multipliers in the FPGA chip. 

To solve this problem, only one satlin unit is built 

and made common to all feedforward nodes, such 

that the output nodes use this unit sequentially in a 

pipelined manner. 

 

5.2 Architecture Implementation  
A parallel FPGA VLSI architecture is 

proposed and used to implement the hierarchical 

MNEO network. The main design strategy of the 

network and the details of the architecture 

prototype are explained in [8][9]. 

 

5.2.1 The building Blocks of the MNEO system 

The MNEO architecture is a processor 

array with SIMD control. It consists of four main 

parts as shown in Fig. 5.  
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This is a fairly SIMD array 

configuration with one control unit (CU), one 

memory unit (MU), one segmentation unit (SU) 

and many processing element units (PEs). 

SU and PEs are the most important 

units that determine the entire speedup of the 

network that is considered as the major factor of 

switching the implementation of ANNs from 

software to hardware. 

 

6 Results and Discussion 
Xilinx Spartan-3 FPGAs are used for 

implementations because these devices come 

with large internal SRAM blocks so that each 

block can be used for internal weight storage and 

for buffering the segmented image data vectors. 

A relatively small FPGA of type XC3S200 of 

200,000 gates, 12 BRAMs and 12 (18×18bits) 

integrated multipliers is used to build the 

designed system.  

 

6.1 MNEO performance Evaluation 

In the MNEO_SIMD_FPGA system, 

since the system does not support learning, the 

Connection Per Second (CPS) and Connection-

bytes-per-second (CBS)[1] are considered to 

evaluate the system speed performance. The 

speed performance of the FPGA based system 

among other FPGA systems depends on the 

operation frequency of the FPGA model used. 

The operation frequency of the XC3S200 FPGA 

model is 50 MHz, the number of input vectors 

that processed in parallel are five, in each  clock 

cycle, 5 input connections of (9bits≈1byte) are 

evaluated by 4 weight connections of the same 

bit precision, then the maximum CPS and CBS 

achieved from the designed system are: 

 

CBS=1×1×CPS    =1GCBS 

 

The above performance seems 

reasonable and comparable with the available 

neural network hardware[1].  

 

6.2   MNEO System and Face recognition 

Face recognition has the benefit of 

being passive, non-intrusive system for verifying 

personal identity. The techniques used in best 

face recognition systems may depend on the 

application of the system[10]. 

The goal of the MNEO system is to 

identify particular person in real-time (e.g. in a 

security monitoring system, location tracking 

system, etc.), or to allow access to a group of 

people and deny access to all others (e.g. access 

to a building, computer, etc.). Multiple images 

per person are often available for training and real-

time recognition is required. 

The MNEO system is tested in the 

application of face recognition. ORL_face database 

were considered. The MNEO hardware system can 

recognize face's image with the same recognition 

accuracy that achieved when using the software 

version. This is due to the use of efficient model, 

its parameters setting, functions approximations 

and the hardware implementation such as S-neuron 

that is based on the realization of a competition 

unit. The system is trained to recognize 12 different 

classes. The recognition rate achieved from both 

software and hardware versions were equal to 93% 

when 60(12x5) training image and 60(12x5) testing 

images were used. Further recognition rate 

improvements can be obtained by performing more 

fine tuning to the MNEO parameters during 

learning which is implemented in software. Some 

techniques for fine tuning improvements can be 

found in [4]. 

 

7 Conclusions  
In this paper we have succeeded in 

mapping one of the most complex neural networks 

(the neocognitron) on an FPGA SIMD architecture. 

The modifications of the neocognitron to reduce its 

complexity give it the possibility of realizing and 

processing in real-time. 

The simplifications and modifications that 

are implemented on the original model of the 

neocognitron include: using low precisions fixed 

point for weights and inputs, and the piecewise 

approximation of the sigmoid transfer function that 

is used in the fully connected feedforward layer. In 

spite of these approximations, the hardware model 

always produces correct recognition codes that 

usually result from the GPP software where no 

precision limitations and no approximation in the 

actual sigmoid function. 

Using the binary representation of cells 

outputs in all the network layers highly reduced the 

hardware resources required to implement the 

network. Consequently a relatively small FPGA 

model of 200,000 gate, 12 integrated BRAMs, 12 

integrated 18×18 multipliers can implement the 

complex design of the MNEO system. 

Using Manhattan distance as a 

competition strategy for computing the S-neuron 

response instead of Euclidean distance led to avoid 

the most FPGA bottlenecks: (the multiplications). 

Also using this winning take all competition 

strategy led to avoid calculations of sigmoid 

transfer function. Therefore, the Mc Culloch-Pitts 

S-neuron model is not used for the simple layers, 

although its sigmoid function can be approximated 
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to piece-wise linear function, since at least one 

multiplication is required. Therefore the bit serial 

arithmetic computation, stochastic computing 

and power of two numeric representation 

methods which are usually used to manipulate 

the multiplication problems in many neural 

hardware were avoided in this paper.  

Replacing the computing strategy of Mc 

Culloch-Pitts of S-neuron by a competition based 

neuron can not be applied for the last 

feedforward layer since it is learned by delta 

rule. In this layer, the inner product between the 

input and weight vector when calculated, 

involves multiplications. But since the input 

vectors of this layer has binary values, then 

multiplication is replaced by weight 

accumulation for the input value equals to '1'.    

The speedup of the 50 MHz FPGA 

platform over the GPP software operating on 2.4 

GHz Pentium 4 computer is 88. This is due to the 

efficient parallel SIMD architecture of the 

modified MNEO. This parallelism is achieved on 

both data transference and data processing, while 

GPP uses sequential SISD architecture. The 

designed MNEO system is considered as a RISC 

processor specifics for one target problem. 

For future work there are several 

research problems which can be 

suggested and in what follows some of these are 

summarized: 

1.  To implement a larger network with fewer 

numbers of gates, a run time dynamic 

reconfigurable CNN system can be designed.  

2. The plane feature can be extracted by using 

methods other than neural network learning such 

as Gabor or Wavelet techniques. Then a hybrid 

system can be implemented on an FPGA 

platform.  
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