
 

Toward Pure Componentware 

 
Saleh Alhazbi

*
, Aman Jantan

**
 

 
*
Computer Science Department, Qatar University , P.O Box 2713,Doha- Qatar 

salhazbi@qu.edu.qa 

 

** School Of Computer Science, Universiti Sains Malaysia, 11800, Penang, Malaysia 

aman@cs.usm.my 

 

 

ABSTRACT 

Componentware seems to be a promising methodology 

for software development in order to cope with software 

complexity. With componentware, the software 

development is shifted from building every thing from 

scratch into just assembling existing components. 

Therefore, Components must be integrated through 

well-defined infrastructure. This paper presents a 

component model and a framework for composing 

component-based systems based on message-pattern 

interaction among the components. 

 
Keywords : Component-based system, message-based 

interaction pattern, connectors. 

 

1. INTRODUCTION 
Reusability in software industry is considered the 

solution for software development complexity. 

Stressing the need of reusability in software 

development started with early structured programming 

languages in the 1970s. The program was divided into 

modules, and the concept of reusability was applied by 

using function libraries to implement the system in 

order to reduce the cost and increase the flexibility of 

the system. Next generation of software reusability was 

appeared with the object oriented development 

approach. After its conception at the end of the 1980s, 

the appealing concept of object-oriented framework has 

attracted attention from many researchers and software 

engineers. Although object oriented paradigm offers 

much support for reusability concept, it could not cope 

with open systems because it still follows traditional 

models for software development where the 

requirements are assumed stable. The third generation 

of reusability in software development appeared in the 

late 1990s when the interest in component-based 

development (CBD) had grown in both research 

community and industry. The major role of a 

component approach is to manage changes better and 

make the system more flexible for future modifications.  

In componentware approach, the whole software system 

is built by integrating pre-built, pre-tested components 

rather than implementing every part from scratch. These 

pre-built components might be developed locally or 

acquired from a third party (commercial off-the-shelf 

components (COTS)). 

 

 

 

1.1 Component 
Component are pieces of software that are wired to 

build a system, the best-known formal definition of 

software component is formed by Szyperski in [7]. It 

states “A software component is a unit of composition 

with contractually specified interfaces and explicit 

context dependencies only. A software component can 

be deployed independently and is subject to 

composition by third parties”. Brown[3] defines a 

component as “an independently deliverable piece of 

functionality providing access to the services through 

interfaces.”  Actually, there seems to exist significant 

overlap- might be confused- between object-oriented 

concepts and component-based principles. This maybe 

because both methodologies focus on utilizing software 

reusability to build systems with high reliability. In 

OOD, it is done through white box reuse where the code 

is available and inheritance is applied instead of 

rebuilding everything from scratch. The interactions 

between system parts accomplished by sending and 

receiving messages between the objects of the system. 

On the other hand, in CBD, the system is built by 

putting pieces of software together where the source 

code usually is unavailable “black box”.  The 

interaction between components is achieved through 

well-defined interfaces [6]. Essentially, objects can not 

be deployed independently while componentware 

assumes integrating components developed separately, 

maybe from different vendors with different 

programming languages. 

 

1.2 Component Models 
Generally, component model defines the rules that must 

be obeyed by developers. It specifies, at an abstract 

level, the standards and principles enforced on software 

engineers who develop and use components [2, 9]. 

Practically, there are different models that supports 

component-based development such as Microsoft’s 

Component Object Model COM+, Sun’s Java Beans, 

J2EE, and Common Object Request Broker 

Architecture (CORBA). Because that many of those 

models are based on object-oriented paradigm, they still 

suffer of objects concept limitations. The principal 

problem with compnentware is how to wire components 

together. It is no longer sufficient that components just 

be integratable. They must be interoperable. 

Interoperability can be defined as the ability of two or 

ACIT 2007, 26-28 November 2007, Lattakia, Syria 169



 

more components to communicate and cooperate 

together to provide system functionalities [9].   

In this paper, we propose a component model that 

supports compnentware principles. It, also, presents our 

framework, Message-based Interaction Component-

based System (MICS), that utilizes our component 

model. In MICS, system functionalities are 

accomplished as a result of components interaction 

through soft system bus. The concept in MICS is 

similar to that one of integrating hardware parts, which 

communicate through well-defined bus.  

This paper is organized as follows. Section 2 

presents MICS component model, section 3 describes 

the architecture of our framework. Section 4 explains 

simple implementation of our framework. Conclusions 

and future work directions are given in section 5. 

 

 

2. MICS COMPONENT MODEL 
In our model, components represent the essential part of 

the system. They are the locus of computation and the 

core providers of system functionalities.  They merely 

services providers and consumers where the 

communication among them is facilitated by other 

entities called connectors.  We should distinguish 

between two views of the software component: 

component type and component instance. The first one 

as a static piece of software that provides specific 

functionalities and the second view as an instance that 

has run-time existence and state.  

In MICS model, components only interacts through 

their interfaces, either provide service to other 

components or require services from them. We use 

XML notations to describe component's interfaces, 

which can help during system composition for 

automatic check of compatibility between their 

interfaces. Any tow components can only communicate 

if they are syntactically compatible. Compatibility can 

be described as the ability of two objects to work 

properly together if connected, i.e. that all exchanged 

messages and data between them are understood by 

each other [8]. Figure 1 is an example of XML 

notations that describes a MICS component with its 

interfaces, which includes its provided and required 

services. This component Comp1 provides a service 

binary Search that searches an integer array and returns 

integer represent the index of searched element. The 

component requires a service sort to sort an array of 

integer. MICS components need connectors to interact 

with each other, which are defined during composition 

phase by the integrator. This separation between 

computations and communications offers loosely 

architecture. It supports concepts of componentware as 

the components being easy pluggable and replaceable. 

Formally, component in our model can be defined 

as follows: 

 

Definition1:Component type is a tuple 

Ct=<Desc,Iinterf>  where Desc  represents the XML 

description of the component interface, Interf  

represents its interfaces where Interf= in U out  and 

In={incoming interfaces} , out={out-going interfaces} 

 

Defintion 2: Component interfaces is a tuple 

Interf=<InInterf,OutInterf> where both InInterf and 

OutInterf are sets of methods M (operations), where 

each M=<Name,Ret,In> 

Name:  represents the name of the method. 

Ret:  represents the return type of the method. 

In :  represents a set of input parameters.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. XML –based component description  

 

 

3. FRAMEWORK 
In this section, we explain our framework that utilizes 

our component model described in previous section. 

Our framework is based on message interaction style 

between components. Components send/receive 

messages through a soft bus to provide the 

functionalities of the system. Additionally, each 

component is hooked to the soft bus through a 

connector to facilitate message exchanges. Generally 

message-oriented pattern of interaction has the 

following advantages:  

1. All dependencies are centralized and no explicit 

decencies between components which makes 

component integration easier [5].  

2. It reduces the architecture complexity of the system 

which means it’s more maintainable and adaptable 

[1,4]. 

3. Message-based systems are more upgradeable and 

reconfigurable as new components can be added for 

satisfying new requirements without changing the 

basic system architecture [4]. Figure 2 depicts 

MICS architecture.  

Formally, system in MICS framework can be 

defined as follows: 

 

Definition 3: System is a tuple  S=<Cs,CNs,Sb,Ms> 
where 

Cs : is a set of MICS components. 

<component> 

<name> Comp1</name> 

<provide> 

 <service> 

  <name> binary Search</name> 

  <return>int</return> 

  <arg>int[ ]</arg> 

 </service> 

</provide> 

<required> 

<service> 

 <name>sort</name> 

 <return>int[ ]</return> 

<arg>int[ ]</arg> 

</service> 

</required> 

</component> 

 

ACIT 2007, 26-28 November 2007, Lattakia, Syria 170



 

CNs: is a set of connectors. 

Sb: is the soft bus. 

Ms: is set of messages that sent/received among 

system's components. 

 

 
 

Figure2. Message-based Architecture in MICS Framework 

 
 Connectors 
Connectors in our framework are not computation parts 

of the system, they facilitate components interaction. 

Each component in MICS communicates with other 

components in the system through connectors, which 

hook the component up to the bus. Each connector 

represents the gateway between the component and the 

bus. We have two types of connectors Out-port and In-

port, Out-port connector masks the services provided by 

the component, therefore this connector has the same 

methods as the component behind it. The task of this 

type is to interpret incoming messages according, and 

call the service from the component. On the other hand, 

out-port connector represents the gateway for the 

service required by the component.  

 

 Soft bus 
Soft bus in our framework is a special component that is 

responsible of tracking and identifying all components 

connected to it, so it routs messages from sender 

components to the target ones. It simulates the concept 

of using bus with hardware, so the components can be 

plugged in or out easily.  

 

 Messages 
MICS framework has two types of messages: Request 

message (RQ), and Response message (RS). Every 

message contains two parts: a message part (such as 

service required, service arguments), and a control part 

(such as message ID, message type). The types of 

messages as follows:  

1. Request message (RQ): this message is sent from a 

component to another asking for one of its provided 

services. The message is six tuple < Message type, 

Receiver, Service, no of arguments, arguments, 

sender> 

2. Response Message(RS): this message is sent as a 
successful response to a previous request, it carries 

the result back to the sender of the request. This 

message format  is five tuple <Message type, 

Receiver, Result, Sender>, even thought the service 

might not returns any result, an RS message should 

send back to the requester component. RS 

considered as acknowledgment message of 

finishing the process. 
 

 

4. IMPLEMENTATION 
We have prototyped our framework in java language 

where the main component is a class. Figure 3 

illustrates the implementation of Bus concept in java 

When a component requires a service, it calls 

general method in its out-port connector, where the 

connector forms that request as a RQ message and 

sends it through the bus. On the other side, the target in-

port connector identifies the message is sent to it, 

interprets its fields, and call the required service with 

the parameters send with RQ. When it finishes the 

service, the result is sent back as RS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                

 Figure3 . Java-based Implementation of Soft Bus 

concept 

 

We have built a simple prototype that generates 

random numbers and use binary search algorithm to 

look for a specific element in that array. Our example 

composed of three components: Main, Gen_Comp to 

generate an array of random integers, Sort_Com to sort 

public  class Bus { 

private static List<OutPort> OutPorts=new 

ArrayList<OutPort>(); 

private static List<InPort> InPorts=new 

ArrayList<InPort>(); 

public static  void connectOutPort( OutPort l ) { 

    OutPorts.add( l );  } 

public static  void disConnectOutPort( OutPort l ) { 

 OutPorts.remove(l );} 

public static void connectInPort( InPort l ) { 

 InPorts.add( l );  } 

public static  void disConnectInPort( InPort l ) { 

 InPorts.remove( l );} 

public static  void sendRequest(RequestMessage m) { 

     int receiver=m.getRecieverId(); 

    Iterator listeners = InPorts.iterator(); 

 while( listeners.hasNext()) 

 { 

 InPort c=((InPort) listeners.next()); 

 if(c.getID()==receiver ) 

  c.receiveRequest(m ); 

 } 

} 

public static  void sendReply(ReplyMessage m) { 

 int receiver=m.getRecieverId(); 

 Iterator listeners = OutPorts.iterator(); 

 while( listeners.hasNext()) 

 { 

 OutPort c=((OutPort) listeners.next()); 

 if(c.getID()==receiver ) 

       c.receiveReply(m); 

 } 

}  

ACIT 2007, 26-28 November 2007, Lattakia, Syria 171



 

the array, and Search_Com to search the sorted array. 

Figure 4 depicts the architecture of our example. 

 

 
Figure 4  . Prototype of MICS Framework 

 

 

5. Conclusion and Future work 
In this paper, we present a framework (MICS) for 

component integration based on message-based 

interaction pattern where message exchange among 

system’s components. The concept presented here 

through MICS is preliminary step toward fully 

pluggable components for building component-based 

systems with more maintainability. Moreover, this 

framework supports run-time updating as components 

can be plug in and out easily to the bus that routs 

messages among the components. Future work is 

needed to build visual tool in order to ease integration 

of components. Real application implementing with 

MICS framework will be good experience to evaluate 

system performance, to estimate overhead resulted of 

using indirection (connectors, bus) communication 

between components. 

 

 

REFERENCES 
[1] Alhazbi, S., "Measuring the Complexity of 

Component-based System Architecture". In 

Proceesdings of International Conference on 

Information and Communication Technologies: 

From Theory to Applications, 593-594,Syria April 

2004. 

[2] Bergner K., Rausch A., Sihling M., Vilbig A.. 

"Putting the parts togehter: Concepts, description 

techniques, and development process for 

componentware," In 33rd Hawaii International 

Conference on System Sciences volume 8, 2000. 

[3] Brwan G., "Background information  on CBD," 

SIGPC, vol.18,no.1, August 1997. 

[4] Cheng J., "Soft System Bus as a Future Software 

Technology," Proc. 8th International Symposium 

on Future Software Technology, Xi'an, China, 

SEA, October 2004. 

[5] Medvidovic N., Taylor R., "A framework for 

classifying and comparing architecture description  

languages," In M. Jazayeri and H. Schauer, editors, 

Proceedings of the Sixth European Software 

Engineering Conference (ESEC/FSE 97), pages 

60–76. Springer–Verlag, 1997. 

[6] Meijler T., Nierstrasz O., Beyond Objects: 

Components. In Cooperative Information Systems: 

Current Trends and Directions, M.P. Papazoglou, 

G. Schlageter (Ed.), Academic Press, 49-78, 1997. 

[7] Szyperski C., Component Software: Beyond Object-

Oriented Programming , Addison-Wesley, 

November 2002. 

[8]  Vallecillo A, Herandez J, and Troya J., "Component 

Interoperability," Tech. Rep. ITI-2000-37, Dept. de 

lenguajes Ciencias de la computación, University 

of Málaga, July 2000. 

[9]  Wegner  P.," Interoperability,"  ACM Computing 

Surveys, vol. 28,no.1, pp.285-287,1996. 

 

 

 

 

 

 

ACIT 2007, 26-28 November 2007, Lattakia, Syria 172




