

LABELED RECONFIGURABLE NETS

FOR MODELING CODE MOBILITY

Laïd Kahloul* and Allaoua Chaoui**

*Computer science department, Biskra University, Algeria

kahloul2006@yahoo.fr

**Lire laboratory, Constantine University, Algeria
a_chaoui2001@yahoo.com

ABSTRACT

Code mobility technologies attract more and more

developers and consumers. Numerous domains are

concerned, many platforms are developed and

interest applications are realized. However,

developing good software products requires

modeling, analyzing and proving steps. The choice

of models and modeling languages is so critical on

these steps. Formal tools are powerful in analyzing

and proving steps. However, poorness of classical

modeling language to model mobility requires

proposition of new models. The objective of this

paper is to provide a specific formalism “labeled

reconfigurable nets” and to show how this one

seems to be adequate to model different kinds of

code mobility.

Keywords: code mobility, modeling mobility,

labeled reconfigurable nets, mobile

agent.

1. INTRODUCTION
Nowadays, code mobility is one of the attracting
fields for computer science researchers. Code
mobility technology seems an interest solution for
distributed applications facing bandwidth problems,
users' mobility, and fault tolerance requirement.
Numerous platforms were been developed [17].
Such platforms allow the broadcasting of this
technology in many domains (information
retrieving [9], e-commerce [11], network
management [22], …). Software engineering
researches have provided some interest design
paradigms influencing the development of the field.
The most recognized paradigms [7] are: code on
demand, remote evaluation, and mobile agent. To
avoid ad-hoc development for code mobility
software, many works attempt to propose
methodologies and approaches ([16], [21], [14],
…). Indeed, these approaches are mostly informal.
They lack in analyzing and proving system
proprieties. Enhancing development process with
formal tools was an attractive field in code mobility
researches.

Traditional formal tools witch were massively
used to model and analyze classical systems seem

to be poor to deal with inherent proprieties in code
mobility systems. Works on formal tools attempt to
extended classical tools to deal with code mobility
proprieties. The most important proposition can be
found in process algebra based model and state
transition model. For the first one, π-calculus [13]
is the famous one, and for the second, high-level
Petri net (with many kinds) can be considered the

good representative. π-calculus is an extension for
CCS (communicating concurrent systems) [12].
CCS allows modeling a system composed of a set
of communicating process. This communication
uses names (gates) to insure synchronization
between processes. In π-calculus information can
been exchanged through gates. The key idea is that
this information can be also a gate. With this idea,
process can exchange gates. Once these gates
received, they can be used by the receiver to

communicate. In an extension of π-calculus, HOπ-
calculus [15], processes can exchange other
processes through gates (the exchanged processes
called agents).

To model mobility with Petri nets, high level
PNets were proposed. The most famous are Mobile
Nets (variant of coloured Petri nets) [1] and
Dynamic Petri nets. In mobile Petri nets, names of
places can appear as tokens inside other places.
Dynamic Petri nets extend mobile Petri nets. In this
last one, firing a transition can cause the creation of
a new subnet. With high-level Petri nets, mobility
in a system is modeled through the dynamic
structure of the net. A process appearing in a new
environment is modeled through a new subnet
created in the former net by firing a transition.
Many extensions have been proposed to adapt
mobile Petri net to specific mobile systems:
Elementary Object Nets [18], reconfigurable nets
[3], Nested Petri Nets [10], HyperPetriNets [2], …
With respect to [20], all these formalisms lack in
security aspect specification. To handle this aspect
in code mobility, recently Mobile Synchronous
Petri Net (based on labeled coloured Petri net) are
proposed [19].

The objective of this work is to present a new
formalism based on Petri nets. Our formalism
“labeled reconfigurable nets” with a different

ACIT 2007, 26-28 November 2007, Lattakia, Syria 162

semantic from the one presented in [3] is dedicated
to model code mobility systems. We attempt to
propose to model mobility in an intuitive and an
explicit way. Mobility of code (a process or an
agent) will be directly modeled through
reconfiguration of the net. We allow adding and
deleting of places, arcs, and transitions at run time.

The rest of this paper is organized as follows. In
section 2, we present some related works. Section 3
starts by presenting the definition of the model. In
section 4 we show how labeled reconfigurable nets
can be used to model the three mobile code
paradigms: “remote evaluation”, “code on
demand”, and “mobile agent”. We conclude this
work and give some perspectives, in section 5.

2. RELATED WORKS
In [4], the authors proposed PrN
(Predicate/Transition nets) to model mobility. They
use concepts: agent space witch is composed of a
mobility environment and a set of connector nets
that bind mobile agents to mobility environment.
Agents are modeled through tokens. So these agents
are transferred by transition firing from a mobility
environment to another. The structure of the net is
not changed and mobility is modeled implicitly
through the dynamic of the net. In [19], authors
proposed MSPN (Mobile synchronous Petri net) as
formalism to model mobile systems and security
aspects. They introduced notions of nets (an entity)
and disjoint locations to explicit mobility. A system
is composed of set of localities that can contain
nets. To explicit mobility, specific transitions
(called autonomous) are introduced. Two kinds of
autonomous transition were proposed: new and go.
Firing a go transition move the net form its locality
towards another locality. The destination locality is
given through a token in an input place of the go
transition. Mobile Petri nets (MPN) [1] extended
colored Petri nets to model mobility. MPN is based

on π-calculus and join calculus. Mobility is
modeled implicitly, by considering names of places
as tokens. A transition can consumes some names
(places) and produce other names. The idea is

inherited from π-calculus where names (gates) are
exchanged between communicating process. MPN
are extended to Dynamic Petri Net (DPN) [1]. In
DPN, mobility is modeled explicitly, by adding
subnets when transitions are fired. In their
presentation [1], no explicit graphic representation
has been exposed.

In nest nets [8], tokens can be Petri nets them
selves. This model allows some transition when
they are fired to create new nets in the output
places. Nest nets can be viewed as hierarchic nets
where we have different levels of details. Places
can contain nets that their places can also contain
other nets et cetera. So all nets created when a
transition is fired are contained in a place. So the
created nets are not in the same level with the first

net. This formalism is proposed to adaptive
workflow systems.

In [3], authors studied equivalence between the

join calculus [6] (a simple version of π-calculus)
and different kinds of high level nets. They used
“reconfigurable net” concept with a different
semantic from the formalism presented in this
work. In reconfigurable nets, the structure of the net
is not explicitly changed. No places or transitions
are added in runtime. The key difference with
colored Petri nets is that firing transition can change
names of output places. Names of places can figure
as weight of output arcs. This formalism is
proposed to model nets with fixed components but
where connectivity can be changed over time.

In this work, we attempt to provide a formal and
graphical model for code mobility. We have
extended Petri net with reconfigure labeled
transitions that when they are fired reconfigure the
net. Mobility is modeled explicitly by the
possibility of adding or deleting at runtime arcs,
transitions and places. Modification in reconfigure

transition’s label allows modeling different kinds of
code mobility. Bindings to resources can be
modeled by adding arcs between environments. It is
clear that in this model created nets are in the same
level of nets that create them. Creator and created
nets can communicate. This model is more
adequate for modeling mobile code systems.

3. DEFINITION OF LABELED

RECONFIGURABLE NETS
Labeled reconfigurable nets are an extension of
Petri nets. Informally, a labeled reconfigurable net
is a set of environments (blocs of units).
Connections between these environments and their
contents can be modified during runtime. A unit is a
specific Petri net. A unit can contain three kinds of
transitions (a unique start transition: , a set of
ordinary transitions: , and a set of reconfigure
transitions:).

Preconditions and post-conditions to fire a start
or an ordinary transition are the same that in Petri
nets. Reconfigure transitions are labeled with labels
that influence their firing. When a reconfigure

transition is fired, a net N will be (re)moved from
an environment E towards another environment E’.
The net N, the environment E and E’ are defined in
the label associated to the transition. After firing a
reconfigure transition, the structure of the labeled
reconfigurable net will be updated (i.e some places,
arcs, and transitions will be deleted or added). Here
after we give our formal definitions of the concepts:
unit, environment and labeled reconfigurable net.
After the definition, we present the dynamic aspect
of this model.

Formal Definition:

Let N1, N2, … Nk be a set of nets.
for each i: 1, …, n : Ni = (Pi, Ti, Ai), such that :

ACIT 2007, 26-28 November 2007, Lattakia, Syria 163

1. Pi = {p
i
1, p

i
2, …, pin) a finite set of places,

2. Ti = STi∪RTi
• STi={st

i
1, st

i
2, …, stim} a finite set of

standard (ordinary) transitions,
• RTi = {rt

i
1, rt

i
2, …, rtir} a finite set

(eventually empty) of “reconfigure

transitions”,
3. Ai ⊆ Pi x Ti ∪ Ti x Pi.

Definition 1 (Unit): a unit UN is a net Ni that has a
specific transition stij denoted start

i
. So

Ti={start
i}∪STi∪RTi.

Définition 2 (Environment): an environment E is
a quadruplet E=(GP, RP, U, A)

• GP = {gp1, gp2, …, gps} a finite set of
specific places : “guest places ”;
• RP = {rp1, rp2, …, rps} a finite set of specific
places : “resource places”;
• U = { N1, N2, … Nk} a set of nets.

• A⊆ GP x StrT∪RPxT. Such that :
StrT={start1, start2, …, startk} and T=ST1∪RT1

∪ ST2∪RT2∪ … ∪ STk∪RTk

Definition 3 (Labeled reconfigurable net):

A labeled reconfigurable net LRN is a set of

environments. LRN={E1, E2, …, Ep} such that

• There exist at least one net Ni in LRN such

that RTi ≠ ∅;
• For each rtij ∈ RTi, rt

i
j has a label

<N,Ee,Eg,ψ,β>, such that N is a unit, Ee
and Eg are environments, ψ a set of places,
β a set of arcs.

Dynamic of labeled reconfigurable nets:

Let LRN = {E1, E2, …, Ep} be a labeled
reconfigurable net,

Let Ei = (GP
i, RPi, Ui, Ai) be an environment in

LRN,
• GPi = {gp1

i, gp2
i, …, gps

i};
• RPi = {rp1

i, rp2
i, …, rpp

i} ;
• Ui = { N1

i, N2
i, … Nk

i};

• Ai ⊆ GPi x starts
i
 ∪ RPi x Ti ∪ Ti x RPi,

where:
 Sarts

i
 = {start

1
, start

2
, ..., start

k} and

Ti={STi
1, ST

i
2, ..., ST

i
k}∪{RT

i
1, RT

i
2, ..., RT

i
k}

Let RTj
i be the non empty set of reconfigure

transitions associated with the net Nj
i.

RTj
i={rtj1, rt

j
2, …, rtjr}.

Let rtjm < N, Ee, Eg, ψ, β> be a reconfigure transition in
RTj

i, such that :
• Ee=(GP

e, RPe, Ue, Ae);

• N=(P, T, A) and N∈Ue;
• Eg=(GP

g, RPg, Ug, Ag);

• ψ ⊆ RPe; ψ=ψr ∪ψc. (ψr denotes removed
places and ψc denotes cloned places).
• β is a set of arcs. β ⊆RPe x T∪RPg x T.

Let strt be the start transition of N.

Conditions to fire rt
j
m<N, Ee, Eg, ψψψψ, ββββ>:

In addition to the known conditions, we impose that
there exists a free place pg in GP

g; witch means: for

each t∈ starts
g, (pg,t)∉A

g.

After firing rt
j
m:

In addition to the known post-condition of a
transition firing, we add the following post-
condition:

LRN will be structurally changed such that:
If Ee and Eg denote the same environment then

LRN will be not changed;
Else:

1) Ug � Ug∪{N}; Ue
� Ue/{N};

2) Ag
� Ag∪(pg, strt);

3) Let DA ={(a, b)∈ Ae/ (a∉ψ and b∉ψ) and
((a∈N and b∉N) or (a∉N and b∈N))}, Ae=Ae-
DA. DA –deleted arcs- to be deleted after
moving N.

4) RPg � RPg∪ψ; RPe
�RPe/ψr

5) if ALRN is the set of arcs in LRN,
ALRN�ALRN∪β .

4. MODELING MOBILITY

PARADIGMS WITH LABELED

RECONFIGURABLE NETS
A mobile code system is composed of execution
units (EUs), resources, and computational
environments (CEs). EUs will be modeled as units
and computational environments as environments.
Modeling resources requires using a set of places.

Reconfigure transitions model mobility actions.
The key in modeling mobility is to identify the
label associated with the reconfigure transition. We
must identify the unit to be moved, the target
computational environment and the types of
binding to resources and their locations. This label
depends on the kind of mobility.

In general, a reconfigure transition rt is always

labeled <EU, CE, CE’, ψ, β>, such that:
• EU: the execution unit to be moved.
• CE, CE’: respectively, resource and target
computational environments.

• ψ: will be used to model transferable
resources. So ψ is empty if the system has no
transferable resource.

• β: models bindings after moving.
The execution unit that contains rt and the EU

that represents the first argument in the label will be
defined according to the three design paradigms:
remote REV) evaluation, code on demand (COD),
and mobile agent (MA).

4.1 REMOTE EVALUATION
In remote evaluation paradigm, an execution unit
EU1 sends another execution unit EU2 from a
computational environment CE1 to another one
CE2. The reconfigure transition rt is contained in

ACIT 2007, 26-28 November 2007, Lattakia, Syria 164

the unit modeling EU1, and EU2 will be the first
argument in rt’s label.

Example 4.1: Let us consider two computational
environments E1 and E2. Firstly, E1 contains two
execution units EU1 and EU2; E2 contains an
execution unit EU3. The three execution units
execute infinite loops. EU1 executes actions {a11,
a12}, EU2 executes actions {a21, a22, a23}, and EU3
executes actions {a31, a32}. a21 requires a
transferable resource TR1 and a non-transferable
resource bound by type PNR1 witch is shared with
a11. a22 and a12 share a transferable resource bound
by value VTR1, and a23 requires a non-transferable
resource NR1. In E2, EU1 requires a non-
transferable resource bound by type PNR2 to
execute a31. PNR2 has the same type of PNR1.

The system will be modeled as a labeled
reconfigurable net LRN. LRN contains two
environments E1, E2 that model the two
computational environments (CE1 and CE2). Units
EU1 and EU2 will model execution units EU1 and
EU2, respectively. In this case, the unit EU1 will

contain a reconfigure transition rt<EU2,E1,E2,ψ, β >;
such that:

1. E1 =(RP1, GP1, U1, A1); RP1= {TR1, PNR1,

VTR1, NR1}. U1 = {EU1, EU2};

2. E2 = (RP2, GP2, U2, A2); RP2={ PNR2}. GP2

={PEU1}.

3. ψr={TR1}, ψc={VTR1};

4. β={(PEU1,str2), (PNR2,a21), (NR1, a23)}.

Figure 1 shows the model this system.

Figure 1: REV-model

The figure 2 shows the configuration after firing rt.

Figure 2: REV-Model after firing rt

4.2 CODE ON DEMAND
In code-on-demand paradigm, an execution unit
EU1 fetches another execution unit EU2. The
reconfigure transition rt is contained in the unit
modeling EU1, and EU2 will be the first argument in
rt’s label. If we reconsider the above example, the
unit EU1 will contain a reconfigure transition rt<EU2,

E2, E1, ψ, β>. Figure 3 shows the model proposed to
model this system.

Figure 3: COD-model

The transition rt<EU2, E2, E1, ψ, β> means that EU1
will demand EU2 to be moved from E2 to E1. In this
case, ψ={TR1, VTR1}, β={(PEU2, str2), (PNR2,
a21), (NR1, a23)}. Figure 4 shows the configuration
after firing rt.

E1

PEU2

PNR2

PEU1

str2

P12

P11

a12

 rt<EU2, E2, E1, ψ, β>

a31

E2

str1

P22

 P23

a23

 P21

a22

a21

PEU1

TR1

VTR1

 NR1

PNR1

 P21

PEU2

str3

P23

P22

a33

a32 P21

 P22

 P23

 a22

a31

E2

PNR2

 P31

PEU2

str3

 P32

 a32

PEU1

VTR1

E1

rt<EU2, E1, E2, ψ, β>

str1

a11

 a12

 P12

 P11

 P13

PEU1

 NR1

PNR1

PEU2

a31

E2

PNR2

 P31

PEU2

str3

 P32

 a32

TR1

a23

PEU1

str2

 a21

VTR1 a22

P21

P22

P23

VTR1

a23

PEU2

TR1

rt<EU2, E1, E2, ψ, β>

 NR1

PNR1

str1

a11

 a12

str2

 a21
 P12

 P11

 P13

PEU1 E1

ACIT 2007, 26-28 November 2007, Lattakia, Syria 165

Figure 4: COD-Model after firing rt

4.3 MOBILE AGENT
In mobile agent paradigm, execution units are
autonomous agents. The agent itself triggers
mobility. In this case, rt –the reconfigure

transition- is contained in the unit modeling the
agent and EU (the first argument) is also this agent.

Example 4.2: let E1 and E2 two computational
environments. E1 contains two agents, a mobile
agent MA and a static agent SA1; E2 contains a
unique static agent SA2. The three agents execute
infinite loops. MA executes actions {a11, a12, a13 },
SA1 executes actions {a21, a22, a23}, and SA2
executes actions {a33, a32}. To be executed, a11
require a transferable resource TR1 and a non-
transferable resource bound by type PNR1 witch is
shared with a21. a12 and a22 share a transferable
resource bound by value, and a13 and a23 share a
non-transferable resource NR1. In E1, SA2 requires a
non-transferable resource bound by type PNR2 to
execute a32. PNR2 has the same type of PNR1.

The system will be modeled as a labeled
reconfigurable net LRN. LRN contains two
environments E1, E2 that model the two
computational environments. In this case the unit A
that models the mobile agent A will contain a

reconfigure transition rt < A, E1, E2, ψ, β >; such
that:

1. E1 =(RP1, GP1, U1, A1); RP1 contains at least
four places that model the four resources.
Let TR1, NR1, PNR1 and VTR1 be these
places. GP1 contains at least a free place PA1
modeling that A can be received, and
U1={A}.

2. E2=(RP2,GP2, U2, A2); RP2={PNR2},
GP2={PA2}.

3. ψr={TR1}, ψc={VTR1};
4. β={(PA2, str1), (PNR2, a11), (NR1, a13)}.

Figure 5 shows the model of this system.

Figure 5: MA-model

The figure 6 shows the configuration after firing rt.

Figure 6: MA-Model after firing rt

5. CONCLUSION
Proposed initially to model concurrency and
distributed systems, Petri nets attract searchers in
mobility modeling domain. The ordinary formalism
is so simple with a smart formal background, but it
fails in modeling mobility aspects. Many extensions
were been proposed to treat mobility aspects. The

PA2
E2

PNR2

PA1

str2

P32

 P31

a32

a31

a21

rt<A, E1, E2, ψ, β >

E1

str1

 P11

P13

a13

P12

 a12

a11

PA1

TR1

VTR1

 NR1

PNR

 P21

PA2

str3

P22

a23

a22

E1

str2

P23

P24

a23

 a22

a21

PEU2

TR1

PNR2

PEU1

str1

P12

 P11

a12

 a11
rt<EU2, E2, E1, ψ, β>

VTR1

a31

VTR1

 NR1

PNR1

 P31

PEU2

str3

 P33

P32

a33

 a32

 PEU1 E2

rt<A, E1, E2, ψ, β >

E2

str1

P11

P13

P4

a13

P12

a12

a11

PA2

TR1

VTR1

PNR2

PA1

str3

P32

 P31

a32

a31

NR1

E1

VTR1

P23

P22

a23

a22

PNR1

PA1
PA2

str2

 P21

a21

ACIT 2007, 26-28 November 2007, Lattakia, Syria 166

key idea was to introduce mechanisms that allow
reconfiguration of the model during runtime. The
most works extends coloured Petri nets and borrow

π-calculus or join calculus ideas to model mobility.
The exchanging of names between processes in π-
calculus is interpreted as exchanging of place’s
names when some transitions are fired. This can
model dynamic communication channels. In much
formalism, mobility of process is modeled by a net
playing as token that moves when a transition is
fired. All these mechanisms allow modeling
mobility in an implicit way. We consider that the
most adequate formalisms must model mobility
explicitly. If a process is modeled as a subnet,
mobility of this process must be modeled as a
reconfiguration in the net that represents the
environment of this process.

In this paper, we have presented a new
formalism “labeled reconfigurable nets”. This
formalism allows explicit modeling of
computational environments and processes mobility
between them. We have presented how this
formalism allows, in a simple and an intuitive
approach, modeling mobile code paradigms. We
have focused on bindings to resources and how they
will be updated after mobility. We believe that the
present formalism is an adequate model for all
kinds of code mobility systems. In our future works
we plan to focus on modeling and analyzing
aspects. In modeling aspects, we are interested to
handle problems such that modeling mutli-hops
mobility, process’s states during travel, birth places
and locations. On the analysis aspect, we are
thinking about an encoding of our model in maude
or mobile maude [5] in order an analysis
automation of our models.

REFERENCES
[1] Andrea Asperti and Nadia Busi. “Mobile Petri

Nets”. Technical Report UBLCS-96-10,
Department of Computer Science University of
Bologna, May 1996.
[2] M.A. Bednarczyk, L. Bernardinello, W.
Pawlowski, and L. Pomello. “Modelling Mobility

with Petri Hypernets”. 17th Int. Conf. on Recent
Trends in Algebraic Development Techniques,
WADT’04. LNCS vol. 3423, Springer-Verlag,
2004.
[3] M. Buscemi and V. Sassone. “High-Level Petri

Nets as Type Theories in the Join Calculus”. In
Proc. of Foundations of Software Science and
Computation Structure (FoSSaCS '01), LNCS 2030,
Springer-Verlag.
[4] Dianxiang Xu and Yi Deng, “Modeling Mobile

Agent Systems with High Level Petri Nets”. 0-7803-
6583-6/00/ © 2000 IEEE.
[5] Francisco Durلn, Steven Eker, Patrick Lincoln
and José Meseguer. “principles of mobile maude”.
In D.Kotz and F.Mattern, editors, Agent systems,
mobile agents and applications, second

international symposium on agent systems and
applications and fourth international symposium on
mobile agents, ASA/MA 2000 LNCS 1882,
Springer Verlag. Sept 2000.
[6] Cédric Fournet Georges Gonthier, “The Join

Calculus: a Language for Distributed Mobile

Programming”. In Applied Semantics. International

Summer School, APPSEM 2000, Caminha,

Portugal, September 2000, LNCS 2395, pages 268--
332, Springer-Verlag. August 2002.
[7] Alfonso Fuggetta, Gian Pietro Picco and
Giovanni Vigna, “Understanding Code Mobility”.
IEEE transactions on software engineering, vol. 24,
no. 5, may 1998.
[8] Kees M. van Hee, Irina A. Lomazova, Olivia
Oanea, Alexander Serebrenik, Natalia Sidorova,
Marc Voorhoeve: “Nested Nets for Adaptive

Systems”. 14 EE. ICATPN 2006: 241-260.
[9] P. Knudsen, “Comparing Two Distributed

Computing Paradigms, A Performance Case

Study”; MS thesis, Univ. of Troms ّ ,1995 .
[10] I.A. Lomazova. “Nested Petri Nets”; Multi-
level and Recursive Systems. Fundamenta
Informaticae vol.47, pp.283-293. IOS Press, 2002.
[11] M. Merz and W. Lamersdorf, “Agents,

Services, and Electronic Markets: How Do They

Integrate?”; Proc. Int’l Conf. Distributed Platforms,
IFIP/IEEE, 1996.
[12] R. Milner. “A Calculus of Communicating

Systems”. Number 92 in Lecture Notes in Computer
Science. Springer Verlag, 1980.
[13] R. Milner, J. Parrow, and D. Walker. “A

calculus of mobile processes”. Information and
Computation, 100:1–77, 1992.
[14] Reinhartz-Berger, I., Dori, D. and Katz, S.
(2005) ”Modelling code mobility and migration: an

OPM/Web approach”, Int. J. Web Engineering and
Technology, Vol. 2, No. 1, pp.6–28.

[15] D. Sangiorgi and D. Walker. “The π -Calculus:

A Theory of Mobile Processes”. Cambridge
University Press, 2001.
[16] Athie L. Self and Scott A. DeLoach.
“Designing and Specifying Mobility within the

Multiagent Systems Engineering methodology ”
Special Track on Agents, Interactions, Mobility,
and Systems (AIMS) at the 18th ACM Symposium
on Applied Computing (SAC 2003). Melbourne,
Florida, USA, 2003.
[17] Tommy Thorn, “Programming languages for

mobile code”. Rapport de recherche INRIA, N °
3134, Mars, 1997.
[18] R. Valk. “Petri Nets as Token Objects: An
Introduction to Elementary Object Nets”.
Applications and Theory of Petri Nets 1998, LNCS
vol.1420, pp.1-25, Springer-Verlag, 1998.
[19] F. Rosa Velardo, O. Marroqn Alonso and D.
Frutos Escrig. “Mobile Synchronizing Petri Nets: a

choreographic approach for coordination in

Ubiquitous Systems”. In 1st Int. Workshop on
Methods and Tools for Coordinating Concurrent,

ACIT 2007, 26-28 November 2007, Lattakia, Syria 167

Distributed and Mobile Systems, MTCoord’05.
ENTCS, No 150.
[20] Fernando Rosa-Velardo. “Coding Mobile

Synchronizing Petri Nets into Rewriting Logic”,
this paper is electronically published in Electronic
Notes in Theoretical Computer science URL:
www.elsevier.nl/locate/entcs.
[21] Sutandiyo, W., Chhetri, M, B., Loke, S,W.,
and Krishnaswamy, S. “mGaia: Extending the Gaia

Methodology to Model Mobile Agent Systems”,

Accepted for publication as a poster in the Sixth
International Conference on Enterprise Information
Systems (ICEIS 2004), Porto, Portugal, April 14-
17.
[22] D.J. Wetherall, J. Guttag, and D.L.
Tennenhouse, “ANTS: A Toolkit for Building and

Dynamically Deploying Network Protocols”
Technical Report, MIT, 1997, in Proc.
OPENARCH’98.

ACIT 2007, 26-28 November 2007, Lattakia, Syria 168

