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ABSTRACT 

The primary purpose of an ADL (Architecture Description Language) is to specify the structural composition of a 

software system in terms of system's components and connectors through the means of a formal representational 

language. Many ADLs have emerged recently, none of them addresses formal analysis and verification of distributed 

architecture with a tractable model and an efficient mechanisable technique. In this paper, we explore the possibility of 

using Rewriting Logic model (via its Maude language) for specifying SADL architectural systems, showing how to 

conceive a behavior specification of systems using Maude concepts and rules.  With them we do not only obtain a high 

level specification of SADL architecture system behavior, but we are also in a position to formally reason about and 

prototype the specification design produced and prototype it. 

 

Keywords: ADLs, Properties Formal Analysis, Rewriting Logic. 

 

1 INTRODUCTION  
Nowadays, formal models proposed for software 

systems are too complex to understand, and to ensure a 

correct analysis. In addition, parts of such systems can 

be reused within another similar system or replaced by 

others. Architecture Description Languages (ADLs) 

[15] have opened the way to number of applications 

concerning the development of complex software 

systems and their maintenance. These languages serve 

to software architect since they provide a well defined 

semantics, at an architectural level, which is not limited 

to "boxes and arrows" description; they permit the 

architecture analysis, either by the respecting style 

constraints, or by formal techniques (for example, 

verifying the deadlock absence); and finally they help in 

system implantation, for example by allowing automatic 

code generation of interactions between system 

components. 

Some existing formal ADL, as Wright [1], Rapide [8] 

and Darwin [9], based mainly on process algebra as the 

π-calculus, CSP or FSP, support the expression and the 
analysis of components, connectors and topologies 

(configurations) behaviors in architectures. In 

counterpart, these ADL are more complex to use since 

they make resort to several formalisms which are judged 

insufficient to describe formally the entire system 

architecture.  

The experience showed that semantic formalisms used 

currently, present some limits concerning formulation of 

some inherent ADL concepts as synchronization and 

dynamic connection between architectural components. 

The objective of the present work is to propose a unique 

semantic formalism, Rewriting Logic, to well describe 

configuration of a software system, and to analyze their 

behaviors according to functional or non functional 

properties.  

Rewriting logic has been introduced by José Meseguer 

[10, 12], as a consequence of its work on general logics 

to describe concurrent systems. In this logic, a 

concurrent system is represented by a rewriting theory 

describing its static and dynamic structures. Several 

languages were created on the basis of rewriting logic, 

the most known is Maude (SRI laboratory, United 

States), a declarative language where several dynamic 

and concurrent applications have been considered. 

In this paper, we propose to formalize SADL (Structural 

Architecture Description Language) [14] to encourage 

its extension in a domain which is not yet covered 

behavior expression, and then this will make it very 

suitable for properties analysis.  

SADL is an architecture description language, proposed 

by the SRI laboratory (United States) [14] and based 

like all other ADLs, on the concepts of component, 

connector and configuration. The particularity of this 

language is its explicit refinement mechanism of 

architectures at different abstraction levels. In fact, this 

mechanism makes possible the systematic translation of 

an abstract architecture to a concrete one containing 

more details.    

Our contribution is then double. Firstly, we define a 

formal semantic framework, based on   rewriting logic, 

specifying all SADL key concepts (component, 

connector, configuration, refinement, etc.), and allowing 
SADL architectures analysis. On the static level, it is 

possible to verify formally the respect of connection 

constraints between ports and roles of components (or 

the architectural style in general). Secondly, other 

verification mechanisms based on the behavior of 

architectural elements constitute possible 

complementary analysis which can be naturally 

addressed in this framework. We are interested in this 
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paper in functional properties verification (as the non 

deadlock) of SADL architecture, using the LTL model-

checker of Maude environment; it constitutes the first 

step in this domain of research. 

The present paper is organized as follows. Section 2 is 

dedicated, first of all to some related works 

presentation. In section 3, we present briefly rewriting 

logic, the formal setting used to support our SADL 

language formalization, and the syntactic concepts of 

this architecture description language. The generic 

approach of the SADL architecture transformation 

toward an equational rewrite theory is given in section 

4. The proposed approach is then extended to describe 

the refinement mechanism of SADL architectures. In 

section 5, some functional properties analysis of an 

extended SADL architecture is made using the LTL 

model-checker of Maude environment. Finally, a 

conclusion and perspectives round off the paper are 

presented. 

 

2 RELATED WORKS  
The definition of some ADLs is based on well known 

formalisms: Wright [1], a CSP based ADL, is designed 

to specify components interaction using connectors and 

architectural styles. Rapide [8] is based on Partial 

Ordered event Sets and emphasizes the behaviour of 

software architectures and simulation to produce 

refinements. However, most of them focus on the 

software architecture description where component 

semantics is in part expressed by its interface, and 

system behavior is not completely defined. Indeed, two 

compatible components according to their services 

names can nevertheless be blocked if their behavioral 

protocols (the order in which services are to be used) are 

incompatible. Therefore, software architecture concepts 

need to be associated to formal theories, clarifying them 

or providing rules to determine whether a given 

architecture is well-formed. In [13] authors specify in 

rewriting logic the semantics for several typical 

architectural patterns. Bragal and Sztajnberg in [3] 

provide a formal model, in rewriting logic of Cbabel, a 

specific ADL. In [2], authors attempt to extend also the 

CBabel language by defining a new notion of 

components mobility. SADL [14] is another ADL whose 

semantic model was constructed in PVS. Authors' 

objective in [7] was to translate an SADL design into 

the core structured semantics (for components, 

connectors and their interconnections), plus appropriate 

semantic layers. Each semantic layer describes related 

semantic properties. Our approach is complementary to 

all these researches. In particular, it defines an 

alternative semantic model to SADL architecture, based 

on   rewriting logic. Thus, in our proposal, the SADL 

software architecture, designed to facilitate designer's 

job, is systematically transformed to a formal and 

unified rewriting theory, which can be extended to 

manage components behavior, prototyped or model 

checked. This facilitates   integration of formal 

specifications in the traditional life-cycle of an 

application development. Additionally, we benefit from 

the presence of rewriting logic operational environment 

Maude [4, 5]. The proposed semantic model is then 

executable under this environment (version 2.3). 

 

3 BASIC CONCEPTS  
3.1 REWRITING LOGIC 
Rewriting logic is a good semantic framework in which 

concurrent and distributed systems can naturally and 

simply specified. It has been used to formalize several 

applications, languages and environments. This section 

objective is to present rewriting logic elementary 

concepts, useful to present our semantic setting 

associated to SADL. For more details, it will be 

necessary to refer to [10] or [12]. 

 In rewriting logic, a concurrent system is described by 

a rewrite theory (Σ, E, L, R). The signature (Σ, E) 

defines the structure of system states. The set R of 

rewrite rules (of the form t→t'), axiomatizes the basic 

local transitions that are possible in the concurrent 

system. The process of concurrent rewriting describes 

concurrent evolution of the system by performing such 

local transitions modulo structural laws E satisfied by 

the system.  

Computation in the concurrent system is a deduction in 

rewriting logic by finite application of the following set 

of deduction rules  

 

 

 

 

 

 

 

 

 

 

 
 

The deduction rules above allow us to infer all possible 

finite concurrent computations of a system specified as 

a rewrite theory as follows: i) reflexivity is the 

possibility of having idle transitions, ii) congruence is a 

general form of parallel composition, iii) replacement 

combines an atomic transition at the top using a rule 

with nested concurrency in the substitution, and iv) 

transitivity is sequential composition. 

A significant consequence of the rewriting logic 

definition is that concurrent rewriting, instead of 

emerging as an operational concept, corresponds exactly 

to the deduction in this logic. Several languages were 

conceived on the basis of rewriting logic, the most 

known ones are: CafeOBJ (Japan), ELAN (France) and 

Maude defined by Meseguer (SRI, United States). 

 

3.1.   MAUDE SYSTEM 
Maude is a declarative language based on rewriting 

logic, used as a meta-language to create different 

environments. It regroups three types of modules 

mainly: functional modules that define the static aspects 

• Reflexivity. For each term [t] in TΣ,E(X),  

 [t] → [t] 

• Congruence. For each f in Σn, n∈N, 
[t1] → [t1'] … [tn] → [tn'] 

[f(t1 ,…, tn)] → [f(t1 ',…, tn')] 

 • Replacement. For each rewrite rule r: 

t(x1 ,…, xn) → t'(x1,…, xn) in R, 

 

[w1] → [w1'] … [wn] → [wn'] 

[t(w/x)] → [t'(w '/ x)] 

• Transitivity.  

[t1] → [t2] [t2] → [t3] 

[t1] → [t3] 
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of a system, they form a Maude sub-language 

(extension of OBJ3) based on the equational logic; 

system modules specify the dynamic aspect of the 

system using rewriting rules; while object oriented 

modules specify the objects oriented systems. The fact 

that specifications in rewriting logic are executable 

makes possible to have a flexible formal model of 

system which can constitute a prototype for the analysis 

and validation phase. In particular, the Maude system 

[4, 5] offers a powerful model checker (LTL) for 

checking systems properties. It acts as follows: it takes 

as input a system model (the module "M") expressed in 

rewriting logic formalism, and a specification (the 

module "M-Preds") which expresses a system 

specification property written in linear temporal logic. 

For a given initial state of the system (expressed in the 

module "M-Check"), it performs a calculus using the 

"on the fly" local methods principle to produce two 

possible results. The result is positive, and all the model 

executions satisfy the specification, or the result is 

negative and at least one execution of the model does 

not satisfy the specification, and in this case the Model-

Checker gives this execution or a simplification of it as 

a counter example. From this counter example, the user 

corrects the source of the problem and then re-executes 

a new checking of the model.  

 

3.2.   SADL LANGUAGE  
SADL (Structural Architecture Description Language) 

is a language of architectures description proposed by 

the SRI laboratory (United States) [14] and based like 

all other ADLs, on the concepts of component, 

connector and configuration. To present SADL’s syntax 
let us consider a portion of standard dataflow 

architecture for the well known compiler example, taken 

from [11], which comprise two components and one 

connector (figure 1b). 
compiler_L1: ARCHITECTURE 

 [char_iport: SEQ(character) −>    
base_ast_oport: ast] 
    IMPORTING character, token, ast FROM 
compiler_types 
    IMPORTING Function FROM Functional_Style 
    IMPORTING Dataflow_Channel, Connects FROM   
Dataflow_Style 
BEGIN 
COMPONENTS 
 lexical_analyzer: Function 

  [char_iport: SEQ(character) −> token_oport: 
SEQ(token)] 
 Parser: Function 

  [token_iport: SEQ(token) −> base_ast_oport: 
ast] 
CONNECTORS 
 token_channel: Dataflow_Channel<SEQ(token)>                
CONFIGURATION 
 token_flow: CONNECTION 
     = Connects(token_channel, token_oport, 
token_iport) 
END compiler_L1 

a:  The SADL architecture 

 
b: Box-and-arrow diagram 

Figure 1: Example Compiler architecture 
In SADL architecture of figure 1a, denoted 

"compiler_L1", component (as 

"lexical_analyzer") or connector (as 

"token_channel") declaration has been defined.  

Internally, a component can have one or more ports. A 

port in SADL defines an interface through which a 

component can provide a service (in port, as 

"char_iport"of "lexical_analyzer" 

component) or require a service (out port, as 

"token_oport" of the same component). 

Initial topology of the architecture can be described in 

terms of a configuration, which can contain two kinds of 

elements: 

− Connections: statements to link out ports of a 

component to in ports of another component mediated 

by a connector. In figure 3a, one connection denoted 

"token_flow" is declared, it expresses that the 

connector "token_channel" relates the out port 

"token_oport" of the component 

"lexical_analyzer" to the in port "token_iport" 
of the "Parser" component. 

− Constraints: used to relate named objects or to 

place semantic restrictions on how they can be related in 

an architecture. 

In the above example, the three lines of the architecture 

head design define the different type predicates used in 

this architecture:   

− The type predicates: "character", 

"token" and "ast" are imported from another 

specification module named "compiler_types",    

− The "Function" predicate is imported from 

the "Functional_Style" style,   

− The "Dataflow_Channel" predicate and 

"Connects" are imported from "Dataflow_Style" 

style.  

We note here that the internal architecture in this 

specification is invisible, if we observe closely the 

"Functional_Style" style, we can find, for 

example, the following declaration: Function: TYPE 

<= COMPONENT, which expresses that "Function" is 

one subtype of the predefined type"COMPONENT", in 

"Dataflow_Style" we recover the declaration in the 

same way:  
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compiler_L2: ARCHITECTURE 

[char_iport: SEQ(character) −>  base_ast_oport: 
ast] 
IMPORTING character, token, ast FROM 
compiler_types 
IMPORTING Function FROM Functional_Style 
IMPORTING Pipe Finite_Stream Connects FROM 
Process_Pipeline_style 
BEGIN 
COMPONENTS 
   lexical_analyzer: Function 

[char_iport: SEQ(character) −> token_oport: 
SEQ(token)] 
   Parser: Function 

[token_iport: SEQ(token) −> base_ast_oport: 
ast] 
CONNECTORS 
 pipe_channel:   Pipe< Finite_Stream(token)> 
CONFIGURATION 
 token_pipe: CONNECTION 
   = Connects(pipe_channel, token_oport, 
token_iport) 
END compiler_L2 

a: The refined SADL architecture 

 
b: Compiler refined structure 

compiler_map: MAPPING FROM compiler_L1 TO 
compiler_L2 
BEGIN 

token_channel   − −> (pipe_channel) 

token_flow      − −> (token_pipe) 
END compiler_map 

c : A mapping  example 

Figure 2: Refinement example in SADL 
Dataflow_Channel : TYPE <= CONNECTOR, as 

well as the declaration of a ternary predicate: 

Connects : PREDICATE(3).  

SADL is dedicated to structural description of 

architectures hierarchies at different levels of 

abstraction thanks to an explicit refinement mechanism. 

In fact, this mechanism makes possible the systematic 

transformation of an abstract architecture to a concrete 

one containing more details, according to an explicit set 

of model transformation rules. The figure 2a presents a 

refined SADL architecture of the compiler example. 

The mapping is clarified in figure 2c. 

In this second architecture level of the compiler: 

"compiler_L2" of figure 2a, we note a new 

architectural style:  

"Process_Pipeline_style", its role is to provide 
more concrete solutions for some architectural elements. 

In this example, the connector "token_channel" and 

the connection "token_flow" are replaced 

respectively by the connector "pipe_channel" and 

the connection "token_pipe", offering a more 

deterministic and comprehensible implementation of 

these two architectural elements.  

The architectural description language SADL is 

intended for the definition of software architecture 

hierarchies that are to be analyzed formally. SADL 

language can be used to specify both the structure and 

the semantics of architecture, but untill now, the main 

focus has been on the former. Thus, in this paper, we 

associate an adequate mathematical model to SADL 

architecture in order to analyze it and to verify some of 

its properties via the Maude Model Checker [6]. 

Practical realization of the SADL parser and analyser 

tools is inspired from this specification prototype which 

is designed and tested under the Maude environment [4, 

5]. 

 

4. SEMANTIC MODEL OF A SADL 

ARCHITECTURE  
Our main contribution consists of defining a formal 

semantic framework, based on rewriting logic, to 

describe all SADL key concepts (component, connector, 

configuration, refinement, etc.), and to analyze such a 

static architecture. At this level, merely static, rewriting 

logic through its Maude language offers an adequate 

semantic setting to verify the respect of connection 

constraints between architecture ports and roles (or 

architectural style in general). Besides, the refinement 

mechanism in SADL is naturally integrated in the 

considered formalism. In our on going works, we plan 

to reconsider this formalization to prove the refined 

architectures equivalence. Since architecture behavior is 

not even covered by SADL language, the main interest 

of this approach is to encourage formal extension of the 

language with this concept to make it suitable for 

properties analysis.  

 

4.1.   ARCHITECTURAL OBJECTS 

FORMALIZATION 
The theoretical model that we associate to SADL 

architecture is an equational theory of the membership 

equational logic, one rewriting logic subclass. This 

model is noted: ( )AE U,∑ , where ∑ is our model 

signature, the useful set of sorts, and operators to 

statically describe an architecture, E represents the set 

of our model equations, and finally A represents the set 

of operators equational attributes. 

Indeed, we adopt a generic approach that associates to 

each architectural object of SADL, a functional 

Maude module (implementation of equational theory). 

Therefore, we have five generic Maude modules 

mentioned in figure 3.  

The proposed approach is general enough since the 

generated functional theory "architecture" is unique and 

a generic model of SADL architecture; it 

remains valid for any architecture example. So, in 

order to transcript a specification architecture 

example, as "compiler-L1" (figure 1a), in  
rewriting logic, we declare a new functional Maude 

module "Compiler" (figure 4) extending the module 

"Architecture" and it will contain the constant 

operators specification to identify in this case, the ports 

(char-iport,  token-iport, token-oport, 

base-ast-oport), the components (lexical-

analyzer, parser),  the connector (token-
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channel), the connection (token-flow), and the 

architecture (compiler-L1) names. Indeed, only one 

equation is included in this module to specify clearly 

and in a global manner each SADL architecture; this 

represent a typical instance of the generic model. 

Through the presented modules of this section, we 

achieved a modular and legible specification of SADL 

architecture. 

Rewriting logic flexibility permits declaration of user 

defined operators persevering SADL architecture syntax 

(see eq clause in figure 4). 

In the same way this specification can be easily 

enriched, particularly, we can add other elements to 

specify architectural components behavior. Another 

theoretical extend of this model will permit deduction of 

Meta functions in rewriting logic that will formalize our 

mapping. Implementation of these functions in Maude  

produces an executable environment for SADL 

specifications that should simplify their parser process. 

fmod Port is 
  / permits the specification of the in/out port notion of a SADL architecture. 
sort DataType . 
sorts IPortName OPortName IPort OPort SetIPort SetOPort . 
subsort OPort < SetOPort . 
subsort IPort < SetIPort . 
op none : -> IPort [ctor] . 
op none : -> OPort [ctor] . 
op _:_ : IPortName DataType -> IPort [ctor prec 21] .   
op _:_ : OPortName DataType -> OPort [ctor prec 21] .  
op _;_ : SetIPort SetIPort -> SetIPort [ctor assoc id: none comm prec 22] .  
op _;_ : SetOPort SetOPort -> SetOPort [ctor assoc id: none comm prec 22] . 
endfm 

fmod Component is 
 / to specify the structure of a SADL component . 
extending Port . 
sorts ComponentName ComponentType Component SetComponent.  
subsort Component < SetComponent . 
op none : -> Component [ctor] .  
op _:_`[_->_`]  : ComponentName ComponentType SetIPort SetOPort -> Component [ctor prec 23] . 
op __ : SetComponent SetComponent -> SetComponent [ctor assoc id: none comm prec 24] . 
endfm 

fmod Connector is 
 / to modelize the interaction between the components .  
extending Port . 
sorts ConnectorName ConnectorType Connector SetConnector . 
subsort Connector < SetConnector .  
op _:_<_> : ConnectorName ConnectorType DataType -> Connector [ctor prec 23] . 
op none : -> Connector [ctor] .  
op __ : SetConnector SetConnector -> SetConnector [ctor assoc id: none comm prec 24] .   
endfm 

fmod Configuration is 
 / this module describe the relation between two components ports and a compatible connector.   
extending Component . 
extending Connector . 
sorts ConnectionName ConnectionRelation Connection ConstraintName ConstraintRelation Constraint 
SetCon . 
subsorts Connection Constraint < SetCon .  
op _:CONNECTION_`(_`,_`,_`) : ConnectionName ConnectionRelation ConnectorName OPortName IPortName -> 
Connection  [ctor prec 23] . 
op _:CONSTRAINT_`(_`,_`) : ConstraintName ConstraintRelation ComponentName ComponentName -> 
Constraint [ctor prec 23] .  
op none : -> SetCon [ctor] . 
op __ : SetCon SetCon -> SetCon [assoc id: none  comm prec 24] .  
endfm 

fmod Architecture is 
 / to define a SADL architecture thanks to the second declared operator . 
extending Configuration .  
sorts Head Architecture . 
subsort Architecture < Component . 
op `[_->_`]  : SetIPort SetOPort -> Head [ctor] .   
op ARCHITECTURE_COMPONENTS_CONNECTORS_CONFIGURATION_ : Head SetComponent SetConnector SetCon -> 
Architecture [ctor prec 25] . 
endfm 

Figure 3: Maude modules formalizing SADL architectural objects
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fmod Compiler is 
extending Architecture .  
ops SEQ-character SEQ-token ast : -> DataType 
[ctor] . 
ops char-iport  token-iport  : -> IPortName 
[ctor] . 
ops token-oport base-ast-oport : -> OPortName 
[ctor] . 
ops lexical-analyzer parser : -> ComponentName 
[ctor] . 
op Function : -> ComponentType [ctor] . 
op token-channel : -> ConnectorName [ctor] . 
op Dataflow-Channel : -> ConnectorType [ctor] . 
op token-flow : -> ConnectionName [ctor] . 
op Connects : -> ConnectionRelation [ctor] . 
op compiler-L1 : -> Architecture . 
eq compiler-L1 = ARCHITECTURE  
       [ char-iport : SEQ-character -> base-
ast-oport : ast ] 
COMPONENTS 
    lexical-analyzer : Function 
          [ char-iport : SEQ-character ->   
token-oport : SEQ-token ]  
    parser : Function 
          [ token-iport : SEQ-token -> base-
ast-oport : ast ]  
CONNECTORS 
    token-channel : Dataflow-Channel < SEQ-
token >  
CONFIGURATION 
    token-flow :CONNECTION Connects ( token-
channel , token-oport , token-iport ) . 
endfm  

Figure 4: "compiler-L1"   architecture in 

Maude 
 

4.2.   REFINEMENT FORMALIZATION 
An explicit refinement of architectures is supported in 

SADL language according to a mapping which is 

specified by a set of pairs associations (see figure 2c) of 

the form:  architectural-element1 -->  
architectural-element2 

In this section, we present an approach for the 

refinement mechanism formalization. In figure 5, a 

system Maude module “REFINER” allows achieving 

such relation between two any abstracts SADL 

architectures.  The most important operator of this 

module is "Refine", which acts on two arguments: a 

term of sort " Architecture " and another term of sort 

" Mapping ", and generates an abstract refined 

architecture using explicit architectural elements 

refinements according to a set of conditional rewrite 

rules, we present in figure 5 an example of such rules 

("refine-component "). 
mod Refiner is 
protecting Architecture . 
sorts MapComp Mapping . 
subsort MapComp < Mapping . 
op nil : -> Mapping [ctor] .   
op _-->_ : Component Component -> MapComp [ 
prec 26] . 
op __ : Mapping Mapping -> Mapping  [assoc  
prec 27 id: nil] . 
op Refine : Architecture Mapping -> 
Architecture . 
var arch : Architecture . 
var map : Mapping . 
var head : Head .  
var setcom : SetComponent . 
var setcon : SetConnector . 

var setcx : SetCon .  
vars comp1 comp2 comp3 : Component .     
crl [refine-component] : Refine(ARCHITECTURE 
head COMPONENTS comp1 setcom CONNECTORS setcon 
CONFIGURATION setcx, comp2 --> comp3 map) => 
Refine(ARCHITECTURE head COMPONENTS comp3 
setcom CONNECTORS setcon CONFIGURATION setcx, 
map) if comp1 == comp2 . 
rl [no-refinement] : Refine(arch, nil) => arch 
. 
endm 

Figure 5: A system Maude module for the 

refinement mechanism 
In the following Maude code, we take advantage of the 

inherent rewriting mechanism in Maude system 

modules to achieve architectures refinement. More 

precisely, we show in figure 6, how to use the 

"Refine" operator to refine the connector "token-

channel" and the connection "token-flow" of the 

"compile-L1" architecture. The result of "refine" 

application is displayed directly in the Maude 

environment window (figure 6). 
\||||||||||||||||||/ 

--- Welcome to Maude --- 
/||||||||||||||||||\ 

Maude 2.3 built: Feb 21 2007 14:55:47 
Copyright 1997-2007 SRI International 

Fri May 25 21:10:21 2007 
Maude> rew Refine ( compiler-L1 ,  token-
channel : Dataflow-Channel < SEQ-token > --> 
pipe-channel : Pipe < Finite-Stream-token >  
token-flow :CONNECTION Connects ( token-channel 
, token-oport , token-iport ) --> token-pipe 
:CONNECTION Connects ( pipe-channel , token-
oport , token-iport ) ) . 
rewrites: 6 in 1625750371000ms cpu (0ms real) 
(0 rewrites/second) 
result Architecture: ARCHITECTURE [char-iport : 
SEQ-character -> base-ast-oport 
    : ast] COMPONENTS lexical-analyzer : 
Function[char-iport : SEQ-character -> 
    token-oport : SEQ-token] parser : 
Function[token-iport : SEQ-token -> 
    base-ast-oport : ast] CONNECTORS pipe-
channel : Pipe < Finite-Stream-token 
    > CONFIGURATION token-pipe :CONNECTION 
Connects(pipe-channel,token-oport, 
    token-iport) 

Figure 6: A use example of "Refine" 

operator 
In addition, the use of rewriting logic via its Maude 

language, will offer an executable and analyzable 

specification while taking advantage of tools around this 
environment as using a model-checker for the linear 

temporal property verification.  

We clarify our approach through a very simple and 

generic example that specifies two processes (procA 

and procB) in mutual exclusion, the shared variable 

"turn", having the value 0 initially, permits to keep 

trace of the process that is going to enter in the critical 

section, which examine or change the value of this 

variable.  The SADL architecture of the system example 

is presented in figure 7. 

The Maude modules describing the structure and 

behavior aspects of the Mutex system is given in figure 

8b.  
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Mutex: ARCHITECTURE [ −> ]   
IMPORTING nat FROM Mutex_types                                          
IMPORTING Variable Read\Write FROM 
Shared_Memory_style      
IMPORTING Process FROM Process_style                        
BEGIN 
COMPONENTS 

     procA: Process [ −> ]  

     procB: Process [ −> ] 
     turn: Variable(nat)[ -> ] 
CONFIGURATION 
     rwA-var: CONSTRAINT Read\Write (procA, 
turn)  
     rwB-var: CONSTRAINT Read\Write (procB, 
turn) 
END Mutex   

Figure 7 : Architectural system Mutex 
The structure aspect of the Mutex system is defined as 

in the previous section (figure 8a). We notice the use of 

an enriched version of the Component module with 

"ComponentState" sort that permits to define the 

state of a component. Now, the operator generating 

SADL component has the following form: 
op _:_`[_->_`]`(_`): ComponentName 
ComponentType SetIPort SetOPort 
ComponentState ->  Component. 

Therefore, we declare in the Mutex module, with 

constructors operators, the process state (wait or 

critical) as well as the state associated to the shared 

variable turn (0 or 1). Reading or updating operations 

of the shared variable turn (by the two processes 

procA and procB), will be defined using the two 

constraints: rwA-var and rwB-var. The behavior of 

the Mutex SADL architecture will be mainly defined 

by the rewriting rules of the Maude system module 
Behav-Mutex 
fmod Mutex is 
extending Architecture .  
ops wait critical 0 1 : -> ComponentState 
[ctor] . 
ops procA procB turn : -> ComponentName [ctor] 
. 
ops Process Variable : -> ComponentType [ctor] 
. 
op Read\write : -> ConstraintRelation [ctor] . 
ops rwA-var rwB-var : -> ConstraintName [ctor] 
. 
op Mutex : -> Architecture . 
eq Mutex = ARCHITECTURE [ none -> none  ] 
 COMPONENTS 
    procA : Process 
         [ none -> none ](wait)   
    procB : Process 
         [ none -> none ](wait)  
    turn : Variable [ none -> none ](0)   
 CONNECTORS 
    none  
 CONFIGURATION 
   rwA-var :CONSTRAINT Read\write ( procA , 
turn )  
   rwB-var :CONSTRAINT Read\write ( procB , 
turn ) .  
endfm 

a: Maude module Mutex 
mod Behav-Mutex is 
protecting MutexG .  
var setc : SetCon . 
var st : ComponentState . 
rl [A-enter] : ARCHITECTURE [ none -> none ] 
COMPONENTS 

  procA : Process [ none -> none ](wait)   
  procB : Process [ none -> none ](st)  
  turn : Variable [ none -> none ](0)   
  CONNECTORS none CONFIGURATION setc =>  
  ARCHITECTURE [ none -> none  ] COMPONENTS 
  procA : Process [ none -> none ](critical)   
  procB : Process [ none -> none ](st)  
  turn : Variable [ none -> none ](0)   
  CONNECTORS none CONFIGURATION setc . 
rl [A-exit] : ARCHITECTURE [ none -> none ] 
COMPONENTS 
  procA : Process [ none -> none ](critical)   
  procB : Process [ none -> none ](st)   
  turn : Variable [ none -> none ](0)   
  CONNECTORS none CONFIGURATION setc =>  
  ARCHITECTURE [ none -> none  ] COMPONENTS  
  procA : Process [ none -> none ](wait)   
  procB : Process [ none -> none ](st)  
  turn : Variable [ none -> none ](1)   
  CONNECTORS none CONFIGURATION setc . 
           . . . 
endm 

b: An extended  module with behavior specification 

Figure 8 : The component behavior expression 
(see figure 8b). Then, the behavior of the Mutex 

architecture is essentially described by the four 

following rewriting rules:     

- A-enter/B-enter: the process procA (respectively 

procB) examines the value of turn variable and if it is 

equal to 0 (respectively 1) it enters in its critical section. 

− A-exit/B-exit: the process procA 

(respectively procB) decides to leave its critical section, 

it modifies the value of turn variable to 1 (respectively 

0). 

Besides, these modules have been tested syntactically 

and analysed formally with the LTL model checker of 

Maude. In particular, we have been interested in 

verifying the mutual exclusion property of the two 

processes procA and procB (see figure 8) expressed as 

a linear temporal logic property: [] ~(crit(procA) 

/\ crit(procB). A theoretical extend of our 

proposed model, based rewriting logic will permit the 
deduction of a Meta model that serves to the 

development and analysis of architectural components. 

A set of functional properties has been already 

considered, while non functional ones will constitute 

our next research axis. 
Maude> red modelCheck(init, [] ~(crit(procA) /\ 
crit(procB))) . 
reduce in Behaviour-CHECK : 
modelCheck(init, []~ (crit(procA) /\ 
crit(procB)))   . 
rewrites: 23 in 7714480714ms cpu (3ms real) (0 
rewrites/second) 
result Bool: true 

Figure 8: The mutual exclusion property 

analysis  
 

5. CONCLUSION 
Since the beginning of the years 90, the community of 

software engineering developed several languages for 

architectures description, their main goal is to develop 

and maintain complex software systems. SADL presents 

a particular interest since it proposes a rich type system 

and allows one to describe designs at various levels of 
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abstraction. In this paper, we firstly presented a 

semantic framework for the SADL architecture 

description language based on rewriting logic. In fact, 

we presented how each element of a SADL architecture 

will be transformed towards one rewriting logic term 

while preserving their initial syntax, thanks to the 

expressive power of this logic. This formalization 

approach can also be adapted to other ADLs. 

We have then proceeded to the refinement formalization 

offered by the SADL language; more precisely we 

indicated how rewriting logic power especially the 

rewriting mechanism will be used for the refinement 

propagation. Indeed, the interest of such approach is to 

offer on the one hand, the possibility to formally verify 

architectural properties, and on the other hand, to add 

other elements to specify new architectural concepts. 

We have enriched the proposed model to allow behavior 

modeling in a SADL architectural component. In one 

ongoing work, we plan to formalize our mapping as 

meta-functions in rewriting logic. The implementation 

of these functions in Maude produces an executable 

environment for SADL specifications that should ease 

the verification process of SADL specifications. 
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