
A FORMAL SEMANTIC FRAMEWORK FOR SADL LANGUAGE

F. BELALA
1
, F. LATRECHE

1
, M. BENAMMAR

2

1
Department of Computer Science, Mentouri University, Constantine, Algeria

2
Department of Computer Science, University of Batna, Algeria

Tel/ Fax: 213 (0) 31 81 88 88

Belalafaiza@hotmail.com

ABSTRACT

The primary purpose of an ADL (Architecture Description Language) is to specify the structural composition of a

software system in terms of system's components and connectors through the means of a formal representational

language. Many ADLs have emerged recently, none of them addresses formal analysis and verification of distributed

architecture with a tractable model and an efficient mechanisable technique. In this paper, we explore the possibility of

using Rewriting Logic model (via its Maude language) for specifying SADL architectural systems, showing how to

conceive a behavior specification of systems using Maude concepts and rules. With them we do not only obtain a high

level specification of SADL architecture system behavior, but we are also in a position to formally reason about and

prototype the specification design produced and prototype it.

Keywords: ADLs, Properties Formal Analysis, Rewriting Logic.

1 INTRODUCTION
Nowadays, formal models proposed for software

systems are too complex to understand, and to ensure a

correct analysis. In addition, parts of such systems can

be reused within another similar system or replaced by

others. Architecture Description Languages (ADLs)

[15] have opened the way to number of applications

concerning the development of complex software

systems and their maintenance. These languages serve

to software architect since they provide a well defined

semantics, at an architectural level, which is not limited

to "boxes and arrows" description; they permit the

architecture analysis, either by the respecting style

constraints, or by formal techniques (for example,

verifying the deadlock absence); and finally they help in

system implantation, for example by allowing automatic

code generation of interactions between system

components.

Some existing formal ADL, as Wright [1], Rapide [8]

and Darwin [9], based mainly on process algebra as the

π-calculus, CSP or FSP, support the expression and the
analysis of components, connectors and topologies

(configurations) behaviors in architectures. In

counterpart, these ADL are more complex to use since

they make resort to several formalisms which are judged

insufficient to describe formally the entire system

architecture.

The experience showed that semantic formalisms used

currently, present some limits concerning formulation of

some inherent ADL concepts as synchronization and

dynamic connection between architectural components.

The objective of the present work is to propose a unique

semantic formalism, Rewriting Logic, to well describe

configuration of a software system, and to analyze their

behaviors according to functional or non functional

properties.

Rewriting logic has been introduced by José Meseguer

[10, 12], as a consequence of its work on general logics

to describe concurrent systems. In this logic, a

concurrent system is represented by a rewriting theory

describing its static and dynamic structures. Several

languages were created on the basis of rewriting logic,

the most known is Maude (SRI laboratory, United

States), a declarative language where several dynamic

and concurrent applications have been considered.

In this paper, we propose to formalize SADL (Structural

Architecture Description Language) [14] to encourage

its extension in a domain which is not yet covered

behavior expression, and then this will make it very

suitable for properties analysis.

SADL is an architecture description language, proposed

by the SRI laboratory (United States) [14] and based

like all other ADLs, on the concepts of component,

connector and configuration. The particularity of this

language is its explicit refinement mechanism of

architectures at different abstraction levels. In fact, this

mechanism makes possible the systematic translation of

an abstract architecture to a concrete one containing

more details.

Our contribution is then double. Firstly, we define a

formal semantic framework, based on rewriting logic,

specifying all SADL key concepts (component,

connector, configuration, refinement, etc.), and allowing
SADL architectures analysis. On the static level, it is

possible to verify formally the respect of connection

constraints between ports and roles of components (or

the architectural style in general). Secondly, other

verification mechanisms based on the behavior of

architectural elements constitute possible

complementary analysis which can be naturally

addressed in this framework. We are interested in this

ACIT 2007, 26-28 November 2007, Lattakia, Syria 154

paper in functional properties verification (as the non

deadlock) of SADL architecture, using the LTL model-

checker of Maude environment; it constitutes the first

step in this domain of research.

The present paper is organized as follows. Section 2 is

dedicated, first of all to some related works

presentation. In section 3, we present briefly rewriting

logic, the formal setting used to support our SADL

language formalization, and the syntactic concepts of

this architecture description language. The generic

approach of the SADL architecture transformation

toward an equational rewrite theory is given in section

4. The proposed approach is then extended to describe

the refinement mechanism of SADL architectures. In

section 5, some functional properties analysis of an

extended SADL architecture is made using the LTL

model-checker of Maude environment. Finally, a

conclusion and perspectives round off the paper are

presented.

2 RELATED WORKS
The definition of some ADLs is based on well known

formalisms: Wright [1], a CSP based ADL, is designed

to specify components interaction using connectors and

architectural styles. Rapide [8] is based on Partial

Ordered event Sets and emphasizes the behaviour of

software architectures and simulation to produce

refinements. However, most of them focus on the

software architecture description where component

semantics is in part expressed by its interface, and

system behavior is not completely defined. Indeed, two

compatible components according to their services

names can nevertheless be blocked if their behavioral

protocols (the order in which services are to be used) are

incompatible. Therefore, software architecture concepts

need to be associated to formal theories, clarifying them

or providing rules to determine whether a given

architecture is well-formed. In [13] authors specify in

rewriting logic the semantics for several typical

architectural patterns. Bragal and Sztajnberg in [3]

provide a formal model, in rewriting logic of Cbabel, a

specific ADL. In [2], authors attempt to extend also the

CBabel language by defining a new notion of

components mobility. SADL [14] is another ADL whose

semantic model was constructed in PVS. Authors'

objective in [7] was to translate an SADL design into

the core structured semantics (for components,

connectors and their interconnections), plus appropriate

semantic layers. Each semantic layer describes related

semantic properties. Our approach is complementary to

all these researches. In particular, it defines an

alternative semantic model to SADL architecture, based

on rewriting logic. Thus, in our proposal, the SADL

software architecture, designed to facilitate designer's

job, is systematically transformed to a formal and

unified rewriting theory, which can be extended to

manage components behavior, prototyped or model

checked. This facilitates integration of formal

specifications in the traditional life-cycle of an

application development. Additionally, we benefit from

the presence of rewriting logic operational environment

Maude [4, 5]. The proposed semantic model is then

executable under this environment (version 2.3).

3 BASIC CONCEPTS
3.1 REWRITING LOGIC
Rewriting logic is a good semantic framework in which

concurrent and distributed systems can naturally and

simply specified. It has been used to formalize several

applications, languages and environments. This section

objective is to present rewriting logic elementary

concepts, useful to present our semantic setting

associated to SADL. For more details, it will be

necessary to refer to [10] or [12].

 In rewriting logic, a concurrent system is described by

a rewrite theory (Σ, E, L, R). The signature (Σ, E)

defines the structure of system states. The set R of

rewrite rules (of the form t→t'), axiomatizes the basic

local transitions that are possible in the concurrent

system. The process of concurrent rewriting describes

concurrent evolution of the system by performing such

local transitions modulo structural laws E satisfied by

the system.

Computation in the concurrent system is a deduction in

rewriting logic by finite application of the following set

of deduction rules

The deduction rules above allow us to infer all possible

finite concurrent computations of a system specified as

a rewrite theory as follows: i) reflexivity is the

possibility of having idle transitions, ii) congruence is a

general form of parallel composition, iii) replacement

combines an atomic transition at the top using a rule

with nested concurrency in the substitution, and iv)

transitivity is sequential composition.

A significant consequence of the rewriting logic

definition is that concurrent rewriting, instead of

emerging as an operational concept, corresponds exactly

to the deduction in this logic. Several languages were

conceived on the basis of rewriting logic, the most

known ones are: CafeOBJ (Japan), ELAN (France) and

Maude defined by Meseguer (SRI, United States).

3.1. MAUDE SYSTEM
Maude is a declarative language based on rewriting

logic, used as a meta-language to create different

environments. It regroups three types of modules

mainly: functional modules that define the static aspects

• Reflexivity. For each term [t] in TΣ,E(X),

 [t] → [t]

• Congruence. For each f in Σn, n∈N,
[t1] → [t1'] … [tn] → [tn']

[f(t1 ,…, tn)] → [f(t1 ',…, tn')]

 • Replacement. For each rewrite rule r:

t(x1 ,…, xn) → t'(x1,…, xn) in R,

[w1] → [w1'] … [wn] → [wn']

[t(w/x)] → [t'(w '/ x)]

• Transitivity.

[t1] → [t2] [t2] → [t3]

[t1] → [t3]

ACIT 2007, 26-28 November 2007, Lattakia, Syria 155

of a system, they form a Maude sub-language

(extension of OBJ3) based on the equational logic;

system modules specify the dynamic aspect of the

system using rewriting rules; while object oriented

modules specify the objects oriented systems. The fact

that specifications in rewriting logic are executable

makes possible to have a flexible formal model of

system which can constitute a prototype for the analysis

and validation phase. In particular, the Maude system

[4, 5] offers a powerful model checker (LTL) for

checking systems properties. It acts as follows: it takes

as input a system model (the module "M") expressed in

rewriting logic formalism, and a specification (the

module "M-Preds") which expresses a system

specification property written in linear temporal logic.

For a given initial state of the system (expressed in the

module "M-Check"), it performs a calculus using the

"on the fly" local methods principle to produce two

possible results. The result is positive, and all the model

executions satisfy the specification, or the result is

negative and at least one execution of the model does

not satisfy the specification, and in this case the Model-

Checker gives this execution or a simplification of it as

a counter example. From this counter example, the user

corrects the source of the problem and then re-executes

a new checking of the model.

3.2. SADL LANGUAGE
SADL (Structural Architecture Description Language)

is a language of architectures description proposed by

the SRI laboratory (United States) [14] and based like

all other ADLs, on the concepts of component,

connector and configuration. To present SADL’s syntax
let us consider a portion of standard dataflow

architecture for the well known compiler example, taken

from [11], which comprise two components and one

connector (figure 1b).
compiler_L1: ARCHITECTURE

 [char_iport: SEQ(character) −>
base_ast_oport: ast]
 IMPORTING character, token, ast FROM
compiler_types
 IMPORTING Function FROM Functional_Style
 IMPORTING Dataflow_Channel, Connects FROM
Dataflow_Style
BEGIN
COMPONENTS
 lexical_analyzer: Function

 [char_iport: SEQ(character) −> token_oport:
SEQ(token)]
 Parser: Function

 [token_iport: SEQ(token) −> base_ast_oport:
ast]
CONNECTORS
 token_channel: Dataflow_Channel<SEQ(token)>
CONFIGURATION
 token_flow: CONNECTION
 = Connects(token_channel, token_oport,
token_iport)
END compiler_L1

a: The SADL architecture

b: Box-and-arrow diagram

Figure 1: Example Compiler architecture
In SADL architecture of figure 1a, denoted

"compiler_L1", component (as

"lexical_analyzer") or connector (as

"token_channel") declaration has been defined.

Internally, a component can have one or more ports. A

port in SADL defines an interface through which a

component can provide a service (in port, as

"char_iport"of "lexical_analyzer"

component) or require a service (out port, as

"token_oport" of the same component).

Initial topology of the architecture can be described in

terms of a configuration, which can contain two kinds of

elements:

− Connections: statements to link out ports of a

component to in ports of another component mediated

by a connector. In figure 3a, one connection denoted

"token_flow" is declared, it expresses that the

connector "token_channel" relates the out port

"token_oport" of the component

"lexical_analyzer" to the in port "token_iport"
of the "Parser" component.

− Constraints: used to relate named objects or to

place semantic restrictions on how they can be related in

an architecture.

In the above example, the three lines of the architecture

head design define the different type predicates used in

this architecture:

− The type predicates: "character",

"token" and "ast" are imported from another

specification module named "compiler_types",

− The "Function" predicate is imported from

the "Functional_Style" style,

− The "Dataflow_Channel" predicate and

"Connects" are imported from "Dataflow_Style"

style.

We note here that the internal architecture in this

specification is invisible, if we observe closely the

"Functional_Style" style, we can find, for

example, the following declaration: Function: TYPE

<= COMPONENT, which expresses that "Function" is

one subtype of the predefined type"COMPONENT", in

"Dataflow_Style" we recover the declaration in the

same way:

ACIT 2007, 26-28 November 2007, Lattakia, Syria 156

compiler_L2: ARCHITECTURE

[char_iport: SEQ(character) −> base_ast_oport:
ast]
IMPORTING character, token, ast FROM
compiler_types
IMPORTING Function FROM Functional_Style
IMPORTING Pipe Finite_Stream Connects FROM
Process_Pipeline_style
BEGIN
COMPONENTS
 lexical_analyzer: Function

[char_iport: SEQ(character) −> token_oport:
SEQ(token)]
 Parser: Function

[token_iport: SEQ(token) −> base_ast_oport:
ast]
CONNECTORS
 pipe_channel: Pipe< Finite_Stream(token)>
CONFIGURATION
 token_pipe: CONNECTION
 = Connects(pipe_channel, token_oport,
token_iport)
END compiler_L2

a: The refined SADL architecture

b: Compiler refined structure

compiler_map: MAPPING FROM compiler_L1 TO
compiler_L2
BEGIN

token_channel − −> (pipe_channel)

token_flow − −> (token_pipe)
END compiler_map

c : A mapping example

Figure 2: Refinement example in SADL
Dataflow_Channel : TYPE <= CONNECTOR, as

well as the declaration of a ternary predicate:

Connects : PREDICATE(3).

SADL is dedicated to structural description of

architectures hierarchies at different levels of

abstraction thanks to an explicit refinement mechanism.

In fact, this mechanism makes possible the systematic

transformation of an abstract architecture to a concrete

one containing more details, according to an explicit set

of model transformation rules. The figure 2a presents a

refined SADL architecture of the compiler example.

The mapping is clarified in figure 2c.

In this second architecture level of the compiler:

"compiler_L2" of figure 2a, we note a new

architectural style:

"Process_Pipeline_style", its role is to provide
more concrete solutions for some architectural elements.

In this example, the connector "token_channel" and

the connection "token_flow" are replaced

respectively by the connector "pipe_channel" and

the connection "token_pipe", offering a more

deterministic and comprehensible implementation of

these two architectural elements.

The architectural description language SADL is

intended for the definition of software architecture

hierarchies that are to be analyzed formally. SADL

language can be used to specify both the structure and

the semantics of architecture, but untill now, the main

focus has been on the former. Thus, in this paper, we

associate an adequate mathematical model to SADL

architecture in order to analyze it and to verify some of

its properties via the Maude Model Checker [6].

Practical realization of the SADL parser and analyser

tools is inspired from this specification prototype which

is designed and tested under the Maude environment [4,

5].

4. SEMANTIC MODEL OF A SADL

ARCHITECTURE
Our main contribution consists of defining a formal

semantic framework, based on rewriting logic, to

describe all SADL key concepts (component, connector,

configuration, refinement, etc.), and to analyze such a

static architecture. At this level, merely static, rewriting

logic through its Maude language offers an adequate

semantic setting to verify the respect of connection

constraints between architecture ports and roles (or

architectural style in general). Besides, the refinement

mechanism in SADL is naturally integrated in the

considered formalism. In our on going works, we plan

to reconsider this formalization to prove the refined

architectures equivalence. Since architecture behavior is

not even covered by SADL language, the main interest

of this approach is to encourage formal extension of the

language with this concept to make it suitable for

properties analysis.

4.1. ARCHITECTURAL OBJECTS

FORMALIZATION
The theoretical model that we associate to SADL

architecture is an equational theory of the membership

equational logic, one rewriting logic subclass. This

model is noted: ()AE U,∑ , where ∑ is our model

signature, the useful set of sorts, and operators to

statically describe an architecture, E represents the set

of our model equations, and finally A represents the set

of operators equational attributes.

Indeed, we adopt a generic approach that associates to

each architectural object of SADL, a functional

Maude module (implementation of equational theory).

Therefore, we have five generic Maude modules

mentioned in figure 3.

The proposed approach is general enough since the

generated functional theory "architecture" is unique and

a generic model of SADL architecture; it

remains valid for any architecture example. So, in

order to transcript a specification architecture

example, as "compiler-L1" (figure 1a), in
rewriting logic, we declare a new functional Maude

module "Compiler" (figure 4) extending the module

"Architecture" and it will contain the constant

operators specification to identify in this case, the ports

(char-iport, token-iport, token-oport,

base-ast-oport), the components (lexical-

analyzer, parser), the connector (token-

ACIT 2007, 26-28 November 2007, Lattakia, Syria 157

channel), the connection (token-flow), and the

architecture (compiler-L1) names. Indeed, only one

equation is included in this module to specify clearly

and in a global manner each SADL architecture; this

represent a typical instance of the generic model.

Through the presented modules of this section, we

achieved a modular and legible specification of SADL

architecture.

Rewriting logic flexibility permits declaration of user

defined operators persevering SADL architecture syntax

(see eq clause in figure 4).

In the same way this specification can be easily

enriched, particularly, we can add other elements to

specify architectural components behavior. Another

theoretical extend of this model will permit deduction of

Meta functions in rewriting logic that will formalize our

mapping. Implementation of these functions in Maude

produces an executable environment for SADL

specifications that should simplify their parser process.

fmod Port is
 / permits the specification of the in/out port notion of a SADL architecture.
sort DataType .
sorts IPortName OPortName IPort OPort SetIPort SetOPort .
subsort OPort < SetOPort .
subsort IPort < SetIPort .
op none : -> IPort [ctor] .
op none : -> OPort [ctor] .
op _:_ : IPortName DataType -> IPort [ctor prec 21] .
op _:_ : OPortName DataType -> OPort [ctor prec 21] .
op _;_ : SetIPort SetIPort -> SetIPort [ctor assoc id: none comm prec 22] .
op _;_ : SetOPort SetOPort -> SetOPort [ctor assoc id: none comm prec 22] .
endfm

fmod Component is
 / to specify the structure of a SADL component .
extending Port .
sorts ComponentName ComponentType Component SetComponent.
subsort Component < SetComponent .
op none : -> Component [ctor] .
op _:_`[_->_`] : ComponentName ComponentType SetIPort SetOPort -> Component [ctor prec 23] .
op __ : SetComponent SetComponent -> SetComponent [ctor assoc id: none comm prec 24] .
endfm

fmod Connector is
 / to modelize the interaction between the components .
extending Port .
sorts ConnectorName ConnectorType Connector SetConnector .
subsort Connector < SetConnector .
op _:_<_> : ConnectorName ConnectorType DataType -> Connector [ctor prec 23] .
op none : -> Connector [ctor] .
op __ : SetConnector SetConnector -> SetConnector [ctor assoc id: none comm prec 24] .
endfm

fmod Configuration is
 / this module describe the relation between two components ports and a compatible connector.
extending Component .
extending Connector .
sorts ConnectionName ConnectionRelation Connection ConstraintName ConstraintRelation Constraint
SetCon .
subsorts Connection Constraint < SetCon .
op _:CONNECTION_`(_`,_`,_`) : ConnectionName ConnectionRelation ConnectorName OPortName IPortName ->
Connection [ctor prec 23] .
op _:CONSTRAINT_`(_`,_`) : ConstraintName ConstraintRelation ComponentName ComponentName ->
Constraint [ctor prec 23] .
op none : -> SetCon [ctor] .
op __ : SetCon SetCon -> SetCon [assoc id: none comm prec 24] .
endfm

fmod Architecture is
 / to define a SADL architecture thanks to the second declared operator .
extending Configuration .
sorts Head Architecture .
subsort Architecture < Component .
op `[_->_`] : SetIPort SetOPort -> Head [ctor] .
op ARCHITECTURE_COMPONENTS_CONNECTORS_CONFIGURATION_ : Head SetComponent SetConnector SetCon ->
Architecture [ctor prec 25] .
endfm

Figure 3: Maude modules formalizing SADL architectural objects

ACIT 2007, 26-28 November 2007, Lattakia, Syria 158

fmod Compiler is
extending Architecture .
ops SEQ-character SEQ-token ast : -> DataType
[ctor] .
ops char-iport token-iport : -> IPortName
[ctor] .
ops token-oport base-ast-oport : -> OPortName
[ctor] .
ops lexical-analyzer parser : -> ComponentName
[ctor] .
op Function : -> ComponentType [ctor] .
op token-channel : -> ConnectorName [ctor] .
op Dataflow-Channel : -> ConnectorType [ctor] .
op token-flow : -> ConnectionName [ctor] .
op Connects : -> ConnectionRelation [ctor] .
op compiler-L1 : -> Architecture .
eq compiler-L1 = ARCHITECTURE
 [char-iport : SEQ-character -> base-
ast-oport : ast]
COMPONENTS
 lexical-analyzer : Function
 [char-iport : SEQ-character ->
token-oport : SEQ-token]
 parser : Function
 [token-iport : SEQ-token -> base-
ast-oport : ast]
CONNECTORS
 token-channel : Dataflow-Channel < SEQ-
token >
CONFIGURATION
 token-flow :CONNECTION Connects (token-
channel , token-oport , token-iport) .
endfm

Figure 4: "compiler-L1" architecture in

Maude

4.2. REFINEMENT FORMALIZATION
An explicit refinement of architectures is supported in

SADL language according to a mapping which is

specified by a set of pairs associations (see figure 2c) of

the form: architectural-element1 -->
architectural-element2

In this section, we present an approach for the

refinement mechanism formalization. In figure 5, a

system Maude module “REFINER” allows achieving

such relation between two any abstracts SADL

architectures. The most important operator of this

module is "Refine", which acts on two arguments: a

term of sort " Architecture " and another term of sort

" Mapping ", and generates an abstract refined

architecture using explicit architectural elements

refinements according to a set of conditional rewrite

rules, we present in figure 5 an example of such rules

("refine-component ").
mod Refiner is
protecting Architecture .
sorts MapComp Mapping .
subsort MapComp < Mapping .
op nil : -> Mapping [ctor] .
op _-->_ : Component Component -> MapComp [
prec 26] .
op __ : Mapping Mapping -> Mapping [assoc
prec 27 id: nil] .
op Refine : Architecture Mapping ->
Architecture .
var arch : Architecture .
var map : Mapping .
var head : Head .
var setcom : SetComponent .
var setcon : SetConnector .

var setcx : SetCon .
vars comp1 comp2 comp3 : Component .
crl [refine-component] : Refine(ARCHITECTURE
head COMPONENTS comp1 setcom CONNECTORS setcon
CONFIGURATION setcx, comp2 --> comp3 map) =>
Refine(ARCHITECTURE head COMPONENTS comp3
setcom CONNECTORS setcon CONFIGURATION setcx,
map) if comp1 == comp2 .
rl [no-refinement] : Refine(arch, nil) => arch
.
endm

Figure 5: A system Maude module for the

refinement mechanism
In the following Maude code, we take advantage of the

inherent rewriting mechanism in Maude system

modules to achieve architectures refinement. More

precisely, we show in figure 6, how to use the

"Refine" operator to refine the connector "token-

channel" and the connection "token-flow" of the

"compile-L1" architecture. The result of "refine"

application is displayed directly in the Maude

environment window (figure 6).
\||||||||||||||||||/

--- Welcome to Maude ---
/||||||||||||||||||\

Maude 2.3 built: Feb 21 2007 14:55:47
Copyright 1997-2007 SRI International

Fri May 25 21:10:21 2007
Maude> rew Refine (compiler-L1 , token-
channel : Dataflow-Channel < SEQ-token > -->
pipe-channel : Pipe < Finite-Stream-token >
token-flow :CONNECTION Connects (token-channel
, token-oport , token-iport) --> token-pipe
:CONNECTION Connects (pipe-channel , token-
oport , token-iport)) .
rewrites: 6 in 1625750371000ms cpu (0ms real)
(0 rewrites/second)
result Architecture: ARCHITECTURE [char-iport :
SEQ-character -> base-ast-oport
 : ast] COMPONENTS lexical-analyzer :
Function[char-iport : SEQ-character ->
 token-oport : SEQ-token] parser :
Function[token-iport : SEQ-token ->
 base-ast-oport : ast] CONNECTORS pipe-
channel : Pipe < Finite-Stream-token
 > CONFIGURATION token-pipe :CONNECTION
Connects(pipe-channel,token-oport,
 token-iport)

Figure 6: A use example of "Refine"

operator
In addition, the use of rewriting logic via its Maude

language, will offer an executable and analyzable

specification while taking advantage of tools around this
environment as using a model-checker for the linear

temporal property verification.

We clarify our approach through a very simple and

generic example that specifies two processes (procA

and procB) in mutual exclusion, the shared variable

"turn", having the value 0 initially, permits to keep

trace of the process that is going to enter in the critical

section, which examine or change the value of this

variable. The SADL architecture of the system example

is presented in figure 7.

The Maude modules describing the structure and

behavior aspects of the Mutex system is given in figure

8b.

ACIT 2007, 26-28 November 2007, Lattakia, Syria 159

Mutex: ARCHITECTURE [−>]
IMPORTING nat FROM Mutex_types
IMPORTING Variable Read\Write FROM
Shared_Memory_style
IMPORTING Process FROM Process_style
BEGIN
COMPONENTS

 procA: Process [−>]

 procB: Process [−>]
 turn: Variable(nat)[->]
CONFIGURATION
 rwA-var: CONSTRAINT Read\Write (procA,
turn)
 rwB-var: CONSTRAINT Read\Write (procB,
turn)
END Mutex

Figure 7 : Architectural system Mutex
The structure aspect of the Mutex system is defined as

in the previous section (figure 8a). We notice the use of

an enriched version of the Component module with

"ComponentState" sort that permits to define the

state of a component. Now, the operator generating

SADL component has the following form:
op _:_`[_->_`]`(_`): ComponentName
ComponentType SetIPort SetOPort
ComponentState -> Component.

Therefore, we declare in the Mutex module, with

constructors operators, the process state (wait or

critical) as well as the state associated to the shared

variable turn (0 or 1). Reading or updating operations

of the shared variable turn (by the two processes

procA and procB), will be defined using the two

constraints: rwA-var and rwB-var. The behavior of

the Mutex SADL architecture will be mainly defined

by the rewriting rules of the Maude system module
Behav-Mutex
fmod Mutex is
extending Architecture .
ops wait critical 0 1 : -> ComponentState
[ctor] .
ops procA procB turn : -> ComponentName [ctor]
.
ops Process Variable : -> ComponentType [ctor]
.
op Read\write : -> ConstraintRelation [ctor] .
ops rwA-var rwB-var : -> ConstraintName [ctor]
.
op Mutex : -> Architecture .
eq Mutex = ARCHITECTURE [none -> none]
 COMPONENTS
 procA : Process
 [none -> none](wait)
 procB : Process
 [none -> none](wait)
 turn : Variable [none -> none](0)
 CONNECTORS
 none
 CONFIGURATION
 rwA-var :CONSTRAINT Read\write (procA ,
turn)
 rwB-var :CONSTRAINT Read\write (procB ,
turn) .
endfm

a: Maude module Mutex
mod Behav-Mutex is
protecting MutexG .
var setc : SetCon .
var st : ComponentState .
rl [A-enter] : ARCHITECTURE [none -> none]
COMPONENTS

 procA : Process [none -> none](wait)
 procB : Process [none -> none](st)
 turn : Variable [none -> none](0)
 CONNECTORS none CONFIGURATION setc =>
 ARCHITECTURE [none -> none] COMPONENTS
 procA : Process [none -> none](critical)
 procB : Process [none -> none](st)
 turn : Variable [none -> none](0)
 CONNECTORS none CONFIGURATION setc .
rl [A-exit] : ARCHITECTURE [none -> none]
COMPONENTS
 procA : Process [none -> none](critical)
 procB : Process [none -> none](st)
 turn : Variable [none -> none](0)
 CONNECTORS none CONFIGURATION setc =>
 ARCHITECTURE [none -> none] COMPONENTS
 procA : Process [none -> none](wait)
 procB : Process [none -> none](st)
 turn : Variable [none -> none](1)
 CONNECTORS none CONFIGURATION setc .
 . . .
endm

b: An extended module with behavior specification

Figure 8 : The component behavior expression
(see figure 8b). Then, the behavior of the Mutex

architecture is essentially described by the four

following rewriting rules:

- A-enter/B-enter: the process procA (respectively

procB) examines the value of turn variable and if it is

equal to 0 (respectively 1) it enters in its critical section.

− A-exit/B-exit: the process procA

(respectively procB) decides to leave its critical section,

it modifies the value of turn variable to 1 (respectively

0).

Besides, these modules have been tested syntactically

and analysed formally with the LTL model checker of

Maude. In particular, we have been interested in

verifying the mutual exclusion property of the two

processes procA and procB (see figure 8) expressed as

a linear temporal logic property: [] ~(crit(procA)

/\ crit(procB). A theoretical extend of our

proposed model, based rewriting logic will permit the
deduction of a Meta model that serves to the

development and analysis of architectural components.

A set of functional properties has been already

considered, while non functional ones will constitute

our next research axis.
Maude> red modelCheck(init, [] ~(crit(procA) /\
crit(procB))) .
reduce in Behaviour-CHECK :
modelCheck(init, []~ (crit(procA) /\
crit(procB))) .
rewrites: 23 in 7714480714ms cpu (3ms real) (0
rewrites/second)
result Bool: true

Figure 8: The mutual exclusion property

analysis

5. CONCLUSION
Since the beginning of the years 90, the community of

software engineering developed several languages for

architectures description, their main goal is to develop

and maintain complex software systems. SADL presents

a particular interest since it proposes a rich type system

and allows one to describe designs at various levels of

ACIT 2007, 26-28 November 2007, Lattakia, Syria 160

abstraction. In this paper, we firstly presented a

semantic framework for the SADL architecture

description language based on rewriting logic. In fact,

we presented how each element of a SADL architecture

will be transformed towards one rewriting logic term

while preserving their initial syntax, thanks to the

expressive power of this logic. This formalization

approach can also be adapted to other ADLs.

We have then proceeded to the refinement formalization

offered by the SADL language; more precisely we

indicated how rewriting logic power especially the

rewriting mechanism will be used for the refinement

propagation. Indeed, the interest of such approach is to

offer on the one hand, the possibility to formally verify

architectural properties, and on the other hand, to add

other elements to specify new architectural concepts.

We have enriched the proposed model to allow behavior

modeling in a SADL architectural component. In one

ongoing work, we plan to formalize our mapping as

meta-functions in rewriting logic. The implementation

of these functions in Maude produces an executable

environment for SADL specifications that should ease

the verification process of SADL specifications.

REFERENCES
[1] Allen R., "A Formal Approach to Software

Architecture", PhD Thesis, Carnegie Mellon

University, CMU Technical Report CMU-CS-97-

144, 1997.

[2] Bouanaka C., Belala F., "On Adding Some Mobility

Primitives to an Architecture Description

Language", In CSIT’06 Proceeding, the 4
th

International Multiconference on Computer

Science and Information Technology, Amman,

Jordan, 2006.

[3] Braga1C., Sztajnberg A., "Towards a Rewriting

Semantics for a Software Architecture

Description Language", in: A. Cavalcanti and P.

Machado, editors, Proceedings of 6
th
 Workshop

on Formal Methods (WMF), Campina Grande,

Brazil, vol. 95 , pp.148-168,2003.

[4] Clavel M., Duran F., Eker S., Marti-Oliet N.,

Lincoln P., Meseguer J. and Talcott C.., "Maude

2", http://maude.cs.uiuc.edu , 2003.

[5] Clavel M., Duran F., Eker S., Martı-Oliet N.,

Lincoln P., Meseguer J., and Quesada J.,

"Maude: Specification and Programming in

Rewriting Logic", SRI International Lab.,

http://maude.csl.sri.com, (1999).

[6] Eker S. and Mesguer J. and Ambarish S., "the

Maude LTL model-Checker", Electronic Notes in

Theorical Computer Science, vol. 71, 2002.

[7] Herbert J., Dutertre B., Riemenschneider R. and

Stavridou V., "A Formalisation of Software

Architecture", J. Wing, J. Woodcock, J. Davies

(Eds): FM’99, Vol.1, LNCS 1708, pp. 116-133,

1999.

 [8] Luckham D. C., Kenny J. J., Augustin L. M., Vera

J., Bryan D. and Mann W., "Specification and

Analysis of system Architecture Using Rapide",

IEEE Transactions on Software Engineering, vol.

21, no. 4, pp. 336-355,1995.

 [9] Magee J., Dualy N., Eisonbach S. and Kramer J.,

"Specifying Distributed Software Architectures",

In Proceedings of the Fifth Symposium on the

Foundations of Software Engineering (FSE4),

vol. 989,pp. 137 - 153,1995.

 [10] Marti-Oliet N., Meseguer J., "Rewriting logic as a

logical and semantic framework", Electronic

Notes in Theoretical Computer Science, Vol. 4,

no.1, pp.1-36, 1996.

[11] Megzari K., "REFINER : Environnement logiciel

pour le raffinement d’architectures logicielles

fondé sur une logique de réécriture", Thèse de

Doctorat préparée au Laboratoire d’Informatique,

Systèmes, Traitement de l’Information et de la

Connaissance, ESIA – Université de Savoie,

2004.

 [12] Meseguer J., "Conditional Rewriting as a Unified

Model of Concurrency", Theoretical Computer

Science 96, pp. 73-155, 1992.

[13] Meseguer J. and Talcott C., "Semantic Models for

Distributed Object Reflection", In ECOOP 2002

Object-Oriented Programming 16th European

Conference, Malaga, Spain, vol. 2374, pp. 1–36,

2002.

 [14] Moriconi M. and Riemenschneider R. A.,

"Introduction to SADL 1.0: A Language for

Specifying Software Architecture Hierarchies",

Technical Report SRI-CSL-97-01, Computer

Science Laboratory, SRI International, 1997.

[15] Nenad M., Richard M., "A Classification and

Comparison Framework for Software

Architecture Description Languages", IEEE

Transactions on Software Engineering, Vol. 26,

no. 1, pp. 70-93, 2000.

ACIT 2007, 26-28 November 2007, Lattakia, Syria 161

