
TOWARDS A FULL AUTOMATIC APPROACH TO USE INA PETRI

NETS ENVIRONMENT FOR BUSINESS PROCESS MODELING

Raida El Mansouri

LIRE Laboratory, Department of Computer Science,

University Mentouri of Constantine, Algeria

raidaelmansouri@yahoo.fr

ABSTRACT

Business process models describe how a business

works, or more specifically, how they accomplish

missions, activities, or tasks. The automated control and

coordination of business processes is made possible by

task control constructs that model behaviors like

concurrency, asynchronism, and choice. However, there

is a real danger of introducing control flow anomalies

and behavioral inconsistencies like deadlock, livelock,

imperfect termination, and multiple task repetitions [5].

Petri Nets provide a powerful formal modeling method

based on solid mathematical fundament while having

graphical representation of system models as net

diagrams and provide various analysis techniques such

as reachability tree, incidence matrix and invariant

analysis method, through which properties of the Petri

Net model such as liveness, reachability and deadlock

can be analyzed.

This paper proposes an approach to illustrate the use of

the Petri Net INA (Integrated Net Analyzer) [6]

environment for formalizing business process

specifications and using analytical techniques to

support verification studies. The first step is automated.

Keywords: Business process modeling, Petri Nets, INA,

Verification, Graph transformation, Meta Modeling.

1. INTRODUCTION
Business process models describe how a business

works, or more specifically, how they accomplish

missions, activities, or tasks (henceforth referred to as

tasks). A single model shows how a business

accomplished a single task. It would take many process

models to fully detail the “hows” of most real world

enterprises.

 A single process can consist of many actors (people,

organizations, systems) performing many tasks. In

order to accomplish the overall task, the actors must

complete specified sub-tasks in a coordinated manner.

Sometimes, these sub-tasks can be performed in

parallel. Sometimes they are sequential.

Some processes require repetition of sub-tasks. Most

processes have decision points where process flow can

branch depending on either the condition of the system

or the particular process execution. In cooperative

processes actors must pass information. This

information transfer can be the trigger for an actor to

begin a sub-task. Other triggers are possible, such as

time or interrupts. Some processes are ad-hoc. That is,

the sub-tasks do not have well defined triggers. Actors

may not need to complete all of a subtask before them

or another actor start work on another dependent

subtask. Finally, a process can look differently when

described from the viewpoint of different actors. A

business process modeling methodology needs to be

able to represent these different aspects of a process

description.

Business process modeling (BPM) provides a

conceptual basis for the specification of all business

procedures. It helps the coordination and integration of

distributed resources, tasks, and individuals, the

effective management of all of which is critical to

sustaining organizational capabilities. Workflow

Management supports both business process

specification and automated execution of business

procedures, and is a next-generation extension to BPM

efforts that emphasizes the increased role that

information systems have come to play in today’s

businesses. Workflow Management involves two phases

– (a) the modeling phase that abstracts from business

procedures and defines computer-implementable

workflow specifications, and (b) the execution phase

that executes instances of the workflows to meet

business requirements, and both these phases are

managed and coordinated by a Workflow Management

System (WfMS) [5].

Essentially, a WfMS integrates and automates the

execution of steps that comprise a business process, and

simultaneously manages resource (information, people,

etc.) assignments. This paper focuses on the modeling

and analysis issues involved in establishing logical and

syntactical correctness of business process

specifications before they are implemented. INA is used

to illustrate the ideas behind these issues. The work is
based on ideas presented in [5], [7], and [8].

The rest of the paper is organized as follows. In section

2 we present some concepts of process modeling that

are relevant with our work. In section 3 we recall some

notions about Petri nets that are necessary for the

specification and analysis of business processes. We

will focus especially on Liveness and deadlock-trap

properties. In section 4 we will propose our approach

and apply it on an example. The last section concludes

the paper and gives some perspectives of this work.

ACIT 2007, 26-28 November 2007, Lattakia, Syria 256

2. PROCESS MODELING
Process modeling aims to produce an abstraction of the

process that serves as a basis for detailed definition,

study, and possible reengineering to eliminate non-

value added activities. The process model must allow

for a clear and transparent understanding of the

activities being undertaken, the dependencies among the

activities, and roles (people, machines, information,

etc.) necessary for the process. An activity-centered

modeling methodology is used for defining process

models in that a process is viewed as a sequence of

inter-related tasks, the transfer of control between them

being determined by logical operations [5].

 The complete specification of business processes

includes (a) the control flow, i.e., the partial and total

ordering specifying the sequence of the various tasks,

(b) the data flow, i.e., the information requirements, and

the resource (people, machines, etc.) allocations for the

execution of the various tasks. This is required for

identifying the input and output requirements for each

task, and also to put together a skeletal outlay of the

process that is both conceptually and descriptively

complete. There has been significant research in

developing process meta-models, namely, a

representational language in which to express workflow

models amenable to automation. Stated simply, the

ability to represent behaviors like concurrency and

choice increases the chances of defining logically

incorrect models with control flow errors, the execution

of which could result in deadlock, livelock, etc. The

focus of this paper is to highlight the use of Petri nets as

a technique for formalizing business process models to

analyze verification issues, and to support performance

evaluation studies. INA is used to illustrate these issues.

 The ease and flexibility of graphical modeling
languages brings with it a possibility for introducing

control flow anomalies in process specifications. The

major control flow verification issues, i.e., checking for

deadlock, livelock, multiple repetition, etc. are

described as follows:

2.1. SOME CONTROL FLOW ANOMALIES
2.1.1 DEADLOCK SITUATION

When control flow from one of several required

merging paths is missing [5].

2.1.2 MULTIPLE REPETITION SITUATIONS

When control flow arrives from multiple sources, but

only one is necessary.

2.1.3 LIVELOCK SITUATION

When control flow fails to exit out of a set of previously

executed tasks.

2.2. CONTROL FLOW CORRECTNESS
Create a control-flow model specifying just the tasks,

and the ordering required within, without the overhead

of resource, data requirements - Petri nets have emerged

as a very popular technique for such abstractions [5].

 These models have been used to answer the following

questions: (a) the initiation problem is to determine if

there is a sequence of task executions that will lead to

the execution of a particular task – this has been shown

to be NP-complete, and (b) the termination problem is

to determine if the control-flow specification will lead

to a terminal state – this has been shown to require

exponential storage requirements.

3. PETRI NETS [MUR 89]
3.1. PETRI NETS: TERMINOLOGY AND

NOTATION
This section introduces the basic Petri net terminology

and notations. The classical Petri net is a directed

bipartite graph with two node types called places and

transitions. The nodes are connected via directed arcs.

Connections between two nodes of the same type are

not allowed. Places are represented by circles and

transitions

by rectangles.

Definition 3.1.1

A Petri net is a triple (P; T; F):

• P is a finite set of places,

• T is a finite set of transitions (P ∩T = ∅ ;),

• F ⊆ (P x T) ∪ (T x P) is a set of arcs (flow

relation)

T1

T3

T2

T4 xor
and

Figure 1 : Deadlock Situation

T1

T3

T2

T4

xor

Figure 3 : Livelock Situation

T3

T4 T1

T2

an

d

xo

r

Figure 2 : Multiple répétition

ACIT 2007, 26-28 November 2007, Lattakia, Syria 257

At any time a place contains zero or more tokens, drawn

as black dots. The state, often referred to as marking, is

the distribution of tokens over places. The number of

tokens may change during the execution of the net.

Transitions are the active components in a Petri net:

they change the state of the net according to the

following firing rule:

(1) A transition t is said to be enabled iff each input

place p of t contains at least one token.

(2) An enabled transition may fire. If transition t fires,

then t consume one token from each input place p of t

and produces one token for each output place p of t.

Definition 3.1.2

A Petri net (PN;M) is live iff, for every reachable state

M' and every transition t there is a state M" reachable

from M' which enables t. A Petri net is structurally live

if there exists an initial state such that the net is live.

Definition 3.1.3

A Petri net (PN;M) is bounded iff for each place p

there is a natural number n such that for every reachable

state the number of tokens in p is less than n. The net is

safe iff for each place the maximum number of tokens

does not exceed 1. A Petri net is structurally bounded
if the net is bounded for any initially state.

Definition 3.1.4

A Petri net PN is well-formed iff there is a state M such

that (PN;M) is live and bounded. Paths connect nodes

by a sequence of arcs.

Definition 3.1.5

A Petri net is a free-choice Petri net [1] iff, for every

two transitions t1 and t2, ·t1 ∩ · t2 ≠ ∅ implies ·t1 = ·

t2.

Deadlock-trap-property [6]

A net satisfies the deadlock-trap-property, if the

maximal trap in each minimal deadlock is sufficiently

marked [6].

A trap is a set of places that, if it contains tokens,

cannot become clean, because every transition which

subtracts tokens from one place in this set has a post-

place in this set, and thus returns tokens to the set.

Hence, the empty set is a trap.

A trap is maximal, if it is not a proper subset of a trap. A

deadlock is a non-empty set of places that cannot be

marked again once it is clean, because every transition

which would fire tokens onto a place in this set has a

pre-place in this set (and so cannot fire).

A deadlock is minimal, if it does not properly contain a

deadlock. A set of places is sufficiently marked, if it

contains a place which contains sufficiently many

tokens to enable all its post-transitions.

3.2. PETRI-NET FORMALIZATIONS OF

BUSINESS PROCESS MODELS
Any process can be understood to be a collection of

events, the conditions that enable these events to occur,

and the conditions that are satisfied following the

completion of these events. A Petri net ideally describes

this intuition, and explicitly separates the conditions,

and the events involved in a process, and models state

changes involved therein, through a simulated

movement of tokens. To map the business processes to

Petri nets, we have used the ideas propose in [5]. For

example the Petri net model in Figure 4 is the mapping

of the process model in Figure 1.

 Petri-nets offer the advantage of graphical appeal

coupled with a rigorous formalism that has found

tremendous use in behavior systems and processes that

exhibit asynchronism, concurrency, and determinism.

Petri nets are especially attractive for formalizing and

analyzing business processes for the following reasons:

(i) clear and unambiguous description of process logic,

(ii) intuitive ease and feel of a self-documenting

graphical formalism that retains complete conceptual

clarity, and (iii) extensive analysis capabilities that

vastly extend the power and usefulness of structured

process description languages like IDEF3. The control

flow issues highlighted previously are readily expressed

in Petri-net theoretic terms, e.g., reachability, deadlock,

liveness, etc. [5]. Moreover, Petri nets allow for a study

of both (a) structural properties pertaining to the static

aspects of the process’s definition, and (b) Behavioral

properties pertaining to the dynamic aspects of the

process observed during its execution.

4. THE APPROACH OF USING INA

ENVIRONMENT
In order to use the INA environment for formalizing

business process specifications and the use of analytical

techniques to support verification studies, we propose

the following steps.

1) First of all each business process model is

mapped to an equivalent Petri net

representation. The mapping is based on the

ideas proposed in [5]. The mapping process is

performed automatically using our tool [2]

based on graph transformation and Meta

modeling [3].

2) Then each graphical representation of the

obtained net is mapped to a textual

representation [6]. This step is being

automated as an extension of our developed

tool [2]. This automation is simple thanks to

graph transformation and Meta modeling [3].

3) Then we have used the INA environment for

analyzing the represented net.

4) Feed backs are given to the user to correct his

business process model.

4.1. APPLICATION OF THE APPROACH
We have used this approach for the three above

situations as follows.

ACIT 2007, 26-28 November 2007, Lattakia, Syria 258

4.1.1. DEADLOCK SITUATION

a) We have used our tool for mapping the business

model of the figure 1 obtained the following

equivalent Petri nets representation.

b) Then we have mapped this representation to the

following textual form in the file dead2.pnt

P M PRE,POST NETZ 1:3_prog_2_term

 0 1 , 1

 1 0 1, 2 3

 2 0 2, 4

 3 0 3, 4

 4 0 4

@

place nr. Name capacity time

 0: p0 oo 0

 1: P1 oo 0

 2: P2 oo 0

 3: P3 oo 0

 4: p4 oo 0

@

trans nr. Name priority time

 1: T1 0 0

 2: T2 0 0

 3: T3 0 0

@

Note: We have added two places (Start: here place 0

and End: here place 4).

c) Then we have applied the INA environment

(INA.exe) with the option A (Analyse) to the file

dead2.pnt and we have obtaine the following

results.

>>>>>>>>>>>> Welcome to the Integrated Net

Analyzer! <<<<<<<<<<<<

Version 2.2 Jul 31 2003 Peter Starke,

Berlin

Current net options are:

 token type: black (for Place/Transition nets)

 time option: no times

 firing rule: normal

 priorities : not to be used

 strategy : single transitions

 line length: 80

Do You want to

 edit ? …....................................E

 fire ? …....................................F

 analyse ? ….................................A

 reduce ? …..................................R

 read the session report ? ….................S

 delete the session report ? …...............D

 change options ? …..........................O

 quit ? …....................................Q

 choice > A

Netfiles:

altbit ampel bpm05 dead1 dead2 dinner

ININET live01

reduce_a reduce_b reduce_c reduce_f reduce_m

reduce_u reduce_v reduce_w

red_simp stateeq terminal

Petri net input file > dead2.pnt

Information on elementary structural properties:

Current name options are:

 transition names not to be written

 place names not to be written

…..................................Reset options? Y/N N

….....................Print the static conflicts? Y/N N

The net is not statically conflict-free.

The net is pure.

The net is ordinary.

The net is homogenous.

The net is not conservative.

The net is subconservative.

The net is structurally bounded.

The net is bounded.

There are no proper semipositive T-surinvariants.

The net is not live.

The net is not live and safe.

The net is not a state machine.

The net is free choice.

The net is extended free choice.

The net is extended simple.

The net has places without pre-transition.

The net is not state machine decomposable (SMD).

The net is not state machine allocatable (SMA).

The net is not strongly connected.

The net is not covered by semipositive T-invariants.

The deadlock-trap-property is not valid.

The net has places without post-transition.

The net is marked.

The net is marked with exactly one token.

Interpretation of the result

The net is not live and the deadlock-trap-property is not

valid. So there is a deadlock situation.

We have also used our approach to verify the situations

of multiple repetition (Figure 2) and livelock (Figure 3)

and we have obtained the expected results.

P1

P3

P2

T1

T3

T2

T4

Figure 4: Petri net model representing the process of Figure 1

ACIT 2007, 26-28 November 2007, Lattakia, Syria 259

5. CONCLUSION AND FURTHER

WORK
In this paper we have proposed an approach to use the

INA Petri nets environment for formalizing business

process specifications and using analytical techniques to

support verification studies. Three properties have been

verified: Deadlock, livelock, and multiple repetition

using INA environment. We have automated the first

step of our proposed approach and we plan to automate

the steps 2 and 3. To this end, we will use the tool

ATOM3 [3] for mapping graphical representation of

business processes to Petri nets models.

REFERENCES

 [1] J. Desel and J. Esparza, Free Choice Petri Nets,

volume 40 of Cambridge Tracts in Theoretical

Computer Science. Cambridge University Press,

Cambridge, UK, 1995.

[2] R. Elmansouri, A Full Automatic Approach based

on Meta-Modelling and Graph Grammars to Generate

Petri Nets models for Business Processes, internal

report No 1, Department of Computer Science,

University Mentouri Constantine, 2007. Submitted to a

journal.

[3] J. de Lara, H. Vangheluwe, ATOM3 : A Tool for

multi-formalism and meta-modeling, LNCS No 2306,

2002.

 [4] T. Murata, “Petri Nets: Properties, Analysis, and

Applications”. Proceedings of the IEEE, 77(4):541–

580, 1989.

[5] E. Sivaraman and M.Kamath

“On The Use of Petri Nets for Business Process

Modeling”, Proceeding of the 11th Annual Industrial

Engineering Research Conference, Orlando, FL., May

2002.

[6] P.H. Starke and S. Roch, “INA: Integrated Net

Analyzer”, 2003.

 [7] Wil M.P. van der Aalst, Workflow Verification:

Finding Control-Flow Errors Using Petri-Net-Based

Techniques, In Aalst, W.M.P., Desel, J., and Oberweis,

A., editors, Business Process Management – Models,

Techniques, and Empirical Studies, volume 1806 of

Lecture Notes in Computer Science, pages 161–183.

Springer-Verlag, 2000.

[8] Wil M.P. van der Aalst, Arthur H.M. ter Hofstede,

and Mathias Weske Business Process Management: A

Survey, Lecture Notes in Computer Science 2678

Springer 2003, ISBN 3-540-40318-3 2003.

ACIT 2007, 26-28 November 2007, Lattakia, Syria 260

