
FPGA IMPLEMENTATION OF THE AES ENCRYPTION AND

DECRYPTION ALGORITHMS

Hamid BESSALAH, Fadila MOSTEFAI, Zahia BRAHIMI,

Centre de Développement des Technologies Avancées, BP 45, lotissement 20 Août 1956, Baba Hassen,-

Alger, ALGERIE

bessalah@cdta.dz, f.mostefai@cdta.dz, zbrahimi@cdta.dz

ABSTRACT

In this paper, architecture for hardware implementation

of the Advanced Encryption Standard (AES) Algorithm is

presented. Where, encryption, decryption and key

schedule are all implemented using small resources of

only 3383 Slices and 8 Block RAMs. So our

implementation fits easily in a Xilinx VirtexII XC2V2000-

4FF896 FPGA. The proposed implementation can

encrypt and decrypt data streams with a throughput of

235 Mbps, and a new way of implementing MixColumns

and InvMixColumns transformations using shared logic

resources is presented.

Keywords: AES, Decryption, Encryption, FPGA,

ECB,Images

1. INTRODUCTION
Since the adoption of the Rijndael algorithm as the new

Advanced Encryption Standard (AES) by the National

Institute of Standards and Technology (NIST) in 2001

[1], numerous FPGA and implementations and

evaluations of the AES were presented in literature [2-9].

The AES algorithm can use cryptographic keys of 128,

192, and 256 bits. In this work we implement the 128 bits

standard on a Field-Programmable Gate Array (FPGA)

using the VHDL as a hardware description language.

The main aim of this work is to produce a low area and

fast clock speed FPGA device. This is done by the use of

a mixed processing of 32 bits and 128 bits; so the result is

a faster algorithm with more cycles.

 The proposed architecture is an alternative of that

presented in [10], and in order to implement

encryption/decryption process in the same circuit, we

took as a starting point this implementation.

 This paper is organized as follows; a review of the basic

structure of the AES is given in section II. Section III is

dedicated to the description of our system architecture

and its specifications. Section IV is dedicated to

performances evaluation of our design and finally, in

section V we conclude our paper and highlight the future

work.

2. THE AES ALGORITHM
The AES algorithm consists mainly of a symmetric block

cipher that can process data blocks of 128, 192 or 256

bits by using key lengths of 128, 196 and 256 bits. The

algorithm is based on the round function, and different

combinations of the algorithm are structured by repeating

this round function different times. Each round function

contains uniform and parallel 4 steps, Byte Substitution,

Row Shifting, Column Mixing and Key Addition, and

each step has its own particular functionality.

A full description of the AES is detailed in the Rijndael

proposal [11]

3. THE PROPOSED ARCHITECTURE
The architecture of this implementation is based on the

paper described by P. Chodowiec [12], the schematic

diagram of circuit implementation of the encryption and

decryption is depicted in Figure 1 and Figure 2:

Figure 1. Encryption schematic

Circuit schematic

The choice of the implementation was based on the

following criteria:

 - The module of encryption and decryption in the

same circuit

 - A circuit with minimum possible FPGA resources

 - Considerable Throughput

 The solution adopted to implement the two modules of

encryption and decryption in the same circuit is to reduce

iterative architecture.

Figure 2. Decryption schematic

AddRoundKey
PT

AddRoundKey ShiftRow SubByte MixColumn

10 rounds

Final round

CT

Initial round

AddRoundKey AddRoundKeInvShiftRow InvSubByte InvMixColum

CT

10 rounds

 Final round

PT

Initial round

ACIT 2007, 26-28 November 2007, Lattakia, Syria 323

Then, we implement ¼ of iteration, and calculate the

iteration on 4 cycles of clock instead of only one as

illustrated in Figure 3.

Figure 3. Iteration calculation

We began the design of the compact architecture by

analyzing the basic architecture, as introduced in [12].

The basic architecture unrolls only one full cipher round,

and iteratively loops data through this round until the

entire encryption or decryption transformation is

completed. Only one block of data is processed at a time.

The structure of the AES round for encryption is shown

in Figure 4.

Figure 4. AES operations

The decryption round looks very similar, except it

employs inverted operations in the following order:

InvShiftRows, InvSubBytes, AddRoundKey and

InvMixColumns. The SubBytes and ShiftRows

operations in Figure 5 are reordered compared to the

cipher round depicted in the standard.

Their order is not significant because SubBytes

operates on single bytes, and ShiftRows reorders bytes

without altering them. This feature was used in our

implementation. The round is composed of sixteen 8

bits S-boxes computing SubBytes, and four 32-bit

MixColumns operations, working independent of each

other. The only operation that spans throughout the entire

128-bit block is ShiftRows.

 In order to create a folded architecture with better

parameters, the bytes of data were arranged in columns as

shown in the Figure 5.

The execution is done in the following steps:

• Read input bytes: 0, 5, A, F; execute SubBytes,

MixColumns and AddRound- Key on them;

write results to the output at locations: 0, 1, 2, 3.

Figure 5. AES folded architecture

• Repeat above operations for input bytes: 4, 9, E, 3;

write results at output locations: 4, 5, 6, 7.

• Repeat above operations for bytes: 8, D, 2, 7; write

results at locations: 8, 9, A, B.

• Repeat above operations for bytes: C, 1, 6, B; write

results at locations: C, D, E, F. Output now becomes

input for the next step.

In these four steps the entire AES round was executed

including ShiftRows operation. At each step only one

byte was read from each input row and one byte was

written to each output row.

 A similar exercise with identical conclusions can be

executed for decryption transformation. Each row can be

viewed as an addressable 8-bits wide memory. The

correct execution of ShiftRows and InvShiftRows is now

resolved to the proper addressing of each of the memories

at the consecutive clock cycles. At the fourth clock cycle

output memories become input memories and vice versa.

3.2. SHIFT REGISTER IMPLEMENTATION
Bytes from the output of AddRoundKey are written into

consecutive locations in the output memory in

consecutive clock cycles. Therefore, we could use a

simple shift-register to shift computed data in without

generating any addresses. Fortunately, LUTs can also be

configured as 16-bit shift registers with variable taps as

shown in Figure 6.

Figure 6. Look-Up Table (LUT) configured as a shift register

3.3. SUBBYTES AND INVSUBBYTES

IMPLEMENTATION
A simple implementation of SubBytes or InvSubBytes

requires a 256x8 read only memory ROM. A block RAM

has enough space to implement SubBytes and

InvSubBytes as shown in figure 7.. Each bus has access

to the whole memory capacity, and can carry out a

transformation of SubBytes or InvSubBytes

independently one of each other. Folded architecture

requires only 4K bytes block RAM to implement four

ACIT 2007, 26-28 November 2007, Lattakia, Syria 324

operations of InvSubBytes or SubBytes. The RAM is an

entirely synchronous memory.

Figure 7. Block RAM for SubBytes et InvSubBytes.

3.4. MIXCOLUMNS AND INVMIXCOLUMNS

IMPLEMENTATION
 The 32-bit input to the MixColumns transformation is

represented as a polynomial of the form a(x) =

a3x
3
+a2x

2
+a1x+a0, with coefficients in the Galois field

(2
8
). The coefficients of a(x) are also polynomials of the

form b(x) = b7x
7
 +b6x

6
 +b5x

5
 + b4x

4
 + b3x

3
 + b2x

2
 + b1x +

b0, with their own coefficients in Galois field (2
8
).

The MixColumns multiplies the input polynomial by a

constant polynomial

 }{ }{ }{ }{02010103)(
23

+++= xxxxc (1)

modulo x
4
 +1. The coefficients in GF(8) are multiplied

modulo x
8
 +x

4
 +x

3
 +x+1. The InvMixColumns multiplies

the input polynomial by another constant polynomial:

 }{ }{ }{ }{ exxdxbxcxd 1 00900)()(23 +++== −
 (2)

The implementation of the MixColumns is very simple

because the coefficients of c(x) are small. On the other

hand, the InvMixColumns is far more complex and

occupies larger area.

P. Chodowiec [12] proposed an implementation based on

the following idea:

)()()()(xfxexcxd ++= (3)

where

 }{ }{ }{ }{08080808)(23 +++= xxxxe (4)

and

 }{ }{0404)(2 += xxf (5)

This implementation yields logic optimizations since

InvMixColumns shares logic resources with

MixColumns. Our implementation is derived as follows:

 }{01)().(=• xdxc (6)

If we multiply both sides of equation (6) by d(x) we

obtain:

)()().(2 xdxdxc =• (7)

where

 }{ }{0504)(22 += xxd (8)

The MixColumns and InvMixColumns can be

implemented using shared logic resources as shown in

Figure8. They are implemented in 4 LUTs input of the

FPGA.

Figure 8. Implementation of MixColumns and InvMixColumns

3.5. ENCRYPTION/DECRYPTION UNIT
The AES encryption and decryption rounds substantially

differ from the point of view of hardware

implementations. One of the inconveniences arises from

the fact that the AddRoundKey is executed after

MixColumns in the case of encryption and before

InvMixColumns in the case of decryption. Therefore, a

switching logic is required to select appropriate data

paths, which affects the performance, as shown in Figure

9.

Figure 9. Implementation of the encryption/decryption unit

3.6. IMPLEMENTATION OF THE KEY

SCHEDULE
 Our AES implementation is designed to perform both

encryption and decryption. Since we did not see any

advantage in computing round keys on-the-fly, we choose

to implement the key schedule that precomputes all round

keys. The implementation of the key schedule is shown in

Figure11. It computes 32-bits of the key material per

clock cycle; therefore, full key schedule execution takes

44 clock cycles. The computed round keys are stored in a

single Block RAM.

4. SYNTHESIS AND IMPLEMENTATION

RESULTS
We implemented our solution on Xilinx Virtex

XC2V2000-4ff896. Simulation is done by ModelSim

5.7c to verify the correctness of the design. The

encryption and decryption unit has been verified using

128 test vectors verification provided by the NIST.

ACIT 2007, 26-28 November 2007, Lattakia, Syria 325

Figure 11. Implementation of the key schedule

This design has been synthesized using ISE Xilinx 6.3i,

the summary of the area utilization in FPGA Xilinx is

shown in table1.

Table 1. Synthesis results

Throughput

(Mbps)

BRAMs

Slices

4 input

LUTs

AES

Encrypt

/ Décrypt

235

8

3383

4157

AES

Encrypt

only [12]

443.33

0

2345

4601

5. CONCLUSION
In this paper, the feasibility of creating a very compact

FPGA implementation of the AES was examined. The

proposed folded architecture achieves good performance

and occupies less area. This compact design was

developed by the examination of each of the components

of the AES algorithm using ECB mode and matching

them into the architecture of the FPGA.

The demonstrated implementation fits in Xilinx

XC2V2000-4FF896 FPGA. Only 34% of the logic

resources available in this device were utilized. This

implementation can encrypt and decrypt data streams up

to 235 Mbps.

The Architecture has been tested and validated on the

NIST vectors tests Benchmarks. However, in future

work, we aim to test and validate our architecture on

medical and satellite images. And adapt our design, in

order to fit it in Xilinx Virtex II XC2V1000-4FG456C of

the Memec Virtex II System Board .

6. REFERENCES
[1] National Institute of Standards and Technology:

FIPS 197: Advanced Encryption Standard,

November 2001

[2] A. J. Elbirt and C. Paar, "An FPGA Implementation

and Performance Evaluation of the Serpent Block

Cipher", Proceedings of the ACM/SIGDA

International Symposium on Field Programmable

Gate Arrays - FPGA 2000, pp. 33-40, February

2000.

[3] Henry Kuo , Ingrid Verbauwhede,

”Architectural Optimization for a 1.82Gbits/sec

VLSI Implementation of the AES Rjindael

Algorithm”, in 3rd international workshop

cryptographic Hardware and embedded systems

(CHES 2001), LNCS2162, Paris, May 2001,pp 51-

64.

[4] Ting Liu, Camel Tanougast, Philippe Brunet, Yves

Berviller, Hassan Rabah et Serge Weber

"Implantation FPGA optimisée de l’algorithme AES

pour applications embarquées", Journées

Francophones sur l'Adéquation Algorithme

Architecture (JFAAA’05), IEEE Signal Processing

Society, IEEE CAS society, 18-21 janvier 2005 à

Dijon, France.

[5] A. J. Elbirt, W. Yip, B. Chetwynd, and C. Paar, "An

FPGA Implementation and Performance Evaluation

of the AES Block Cipher Candidate Algorithm

Finalists", Proceedings of the Third Advanced

Encryption Conference, pp. 13-27, April 2000

[6] X. Zhang and K. K. Parhi, “High-speed VLSI

Architectures for the AES Algorithm,” IEEE Trans.

on VLSI Systems, vol. 12(9), pp. 957-967, Sep.

2004.

[7] A. Hodjat, I. Verbauwhede, “Speed-Area Trade-off

for 10 to 100 Gbits/s Throughput AES Processor’,

37th Asilomar Conference on Signals, Systems, and

Computers, November 2003.

[8] A. Hodjat, I. Verbauwhede,” Minimum area cost for

a 30 to 70 Gbits/s AES processor” Dept. of Electr.

Eng., California Univ., Los Angeles, CA, USA; 19-

20 Feb. 2004.

[9] N.Sklavos, O.Koufopavlou “Architectures and

VLSI Implementations of the AES-Proposal

Rijndael”,IEEE Computer Society Washington,

DC, USA December 2002.

[10] H.Bessalah,,F. Mostefai, Z. Brahimi, “ FPGA

Implementation of the AES Algorithm Encryption ”,

International Computer Systems & Information

Technology conference ICSIT’05, Algiers

ALGERIA, July 19-21, 2005.

[11] J. Daemen and V. Rijmen, AES Proposal: Rijndael

(Version 2).NIST AES Website;

http://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijnd

aelammended.pdf

[12] Pawel Chodowiec and Kris Gaj, “Very Compact

FPGA Implementation of the AES Algorithm” ,

CHES 2003, LNCS 2779, pp. 319-333

ACIT 2007, 26-28 November 2007, Lattakia, Syria 326

