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ABSTRACT 

In this paper, architecture for hardware implementation 

of the Advanced Encryption Standard (AES) Algorithm is 

presented. Where, encryption, decryption and key 

schedule are all implemented using small resources of 

only 3383 Slices and 8 Block RAMs. So our 

implementation fits easily in a Xilinx VirtexII XC2V2000-

4FF896 FPGA. The proposed implementation can 

encrypt and decrypt data streams with a throughput of 

235 Mbps, and a new way of implementing MixColumns 

and InvMixColumns transformations using shared logic 

resources is presented. 
 

Keywords: AES, Decryption, Encryption,  FPGA, 

ECB,Images 

 

1.  INTRODUCTION 
Since the adoption of the Rijndael algorithm as the new 

Advanced Encryption Standard (AES) by the National 

Institute of Standards and Technology (NIST) in 2001 

[1], numerous FPGA and implementations and 

evaluations of the AES were presented in literature [2-9]. 

The AES algorithm can use cryptographic keys of 128, 

192, and 256 bits. In this work we implement the 128 bits 

standard on a Field-Programmable Gate Array (FPGA) 

using the VHDL as a hardware description language. 

The main aim of this work is to produce a low area and 

fast clock speed FPGA device. This is done by the use of 

a mixed processing of 32 bits and 128 bits; so the result is 

a faster algorithm with more cycles. 

 The proposed architecture is an alternative of that 

presented in [10], and in order to implement 

encryption/decryption process in the same circuit, we 

took as a starting point this implementation. 

 This paper is organized as follows; a review of the basic 

structure of the AES is given in section II. Section III is 

dedicated to the description of our system architecture 

and its specifications. Section IV is dedicated to 

performances evaluation of our design and finally, in 

section V we conclude our paper and highlight the future 

work.  

 

2. THE AES ALGORITHM 
The AES algorithm consists mainly of a symmetric block 

cipher that can process data blocks of 128, 192 or 256 

bits by using key lengths of 128, 196 and 256 bits. The 

algorithm is based on the round function, and different 

combinations of the algorithm are structured by repeating 

this round function different times. Each round function 

contains uniform and parallel 4 steps, Byte Substitution, 

Row Shifting, Column Mixing and Key Addition, and 

each step has its own particular functionality. 

A full description of the AES is detailed in the Rijndael 

proposal [11] 

 
3. THE PROPOSED ARCHITECTURE  
The architecture of this implementation is based on the 

paper described by P. Chodowiec [12], the schematic 

diagram of circuit implementation of the encryption and 

decryption is depicted in Figure 1 and Figure 2: 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Encryption schematic 

 
Circuit schematic 

The choice of the implementation was based on the 

following criteria:  

 - The module of encryption and decryption in the  

same circuit  

         -  A circuit with minimum possible FPGA resources 

         -   Considerable Throughput  

 The solution adopted to implement the two modules of 

encryption and decryption in the same circuit is to reduce 

iterative architecture. 

 
 

 

 

 

 

 

 

 

 

 

Figure 2.  Decryption schematic 
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Then, we implement ¼ of iteration, and calculate the 

iteration on 4 cycles of clock instead of only one as 

illustrated in Figure 3. 

 

 

 

 

 

 
 

Figure 3. Iteration calculation 

 

We began the design of the compact architecture by 

analyzing the basic architecture, as introduced in [12]. 

The basic architecture unrolls only one full cipher round, 

and iteratively loops data through this round until the 

entire encryption or decryption transformation is 

completed. Only one block of data is processed at a time.  

The structure of the AES round for encryption is shown 

in Figure 4.  

Figure 4. AES operations 

 
The decryption round looks very similar, except it 

employs inverted operations in the following order: 

InvShiftRows, InvSubBytes, AddRoundKey and 

InvMixColumns. The SubBytes and ShiftRows 

operations in Figure 5 are reordered compared to the 

cipher round depicted in the standard.  

Their order is not significant because SubBytes 

operates on single bytes, and ShiftRows reorders bytes 

without altering them. This feature was used in our 

implementation. The round is composed of   sixteen 8 

bits S-boxes computing SubBytes, and four 32-bit 

MixColumns operations, working independent of each 

other. The only operation that spans throughout the entire 

128-bit block is ShiftRows. 

   In order to create a folded architecture with better 

parameters, the bytes of data were arranged in columns as 

shown in the Figure 5. 

The execution is done in the following steps: 

• Read input bytes: 0, 5, A, F; execute SubBytes, 

MixColumns and AddRound- Key on them; 

write results to the output at locations: 0, 1, 2, 3. 

 

 
Figure 5.  AES folded architecture 

 

• Repeat above operations for input bytes: 4, 9, E, 3; 

write results at output locations: 4, 5, 6, 7. 

• Repeat above operations for bytes: 8, D, 2, 7; write 

results at locations: 8, 9, A, B. 

• Repeat above operations for bytes: C, 1, 6, B; write 

results at locations: C, D, E, F. Output now becomes 

input for the next step. 
 

In these four steps the entire AES round was executed 

including ShiftRows operation. At each step only one 

byte was read from each input row and one byte was 

written to each output row. 

   A similar exercise with identical conclusions can be 

executed for decryption transformation. Each row can be 

viewed as an addressable 8-bits wide memory. The 

correct execution of ShiftRows and InvShiftRows is now 

resolved to the proper addressing of each of the memories 

at the consecutive clock cycles. At the fourth clock cycle 

output memories become input memories and vice versa. 

 

3.2. SHIFT REGISTER IMPLEMENTATION 
Bytes from the output of AddRoundKey are written into 

consecutive locations in the output memory in 

consecutive clock cycles. Therefore, we could use a 

simple shift-register to shift computed data in without 

generating any addresses. Fortunately, LUTs can also be 

configured as 16-bit shift registers with variable taps as 

shown in Figure 6.  

 

 

Figure 6.  Look-Up Table (LUT) configured as a shift register 

 

3.3. SUBBYTES AND INVSUBBYTES 

IMPLEMENTATION  
A simple implementation of SubBytes or InvSubBytes 

requires a 256x8 read only memory ROM. A block RAM 

has enough space to implement SubBytes and 

InvSubBytes as shown in figure 7.. Each bus has access 

to the whole memory capacity, and can carry out a 

transformation of SubBytes or InvSubBytes 

independently one of each other. Folded architecture 

requires only 4K bytes block RAM to implement four 
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operations of InvSubBytes or SubBytes. The RAM is an 

entirely synchronous memory. 

 
Figure 7. Block RAM for SubBytes et InvSubBytes. 

 

3.4.  MIXCOLUMNS AND INVMIXCOLUMNS 

IMPLEMENTATION 
 The 32-bit input to the MixColumns transformation is 

represented as a polynomial of the form a(x) = 

a3x
3
+a2x

2
+a1x+a0, with coefficients in the Galois field 

(2
8
). The coefficients of a(x) are also polynomials of the 

form b(x) = b7x
7
 +b6x

6
 +b5x

5
 + b4x

4
 + b3x

3
 + b2x

2
 + b1x + 

b0, with their own coefficients in Galois field (2
8
). 

The MixColumns multiplies the input polynomial by a 

constant polynomial 
 

       }{ }{ }{ }{02010103)(
23

+++= xxxxc                             (1) 

 

modulo x
4
 +1. The coefficients in GF(8) are multiplied 

modulo x
8
 +x

4
 +x

3
 +x+1. The InvMixColumns multiplies 

the input polynomial by another constant polynomial: 
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The implementation of the MixColumns is very simple 

because the coefficients of c(x) are small. On the other 

hand, the InvMixColumns is far more complex and 

occupies larger area. 
 

P. Chodowiec [12] proposed an implementation based on 

the following idea: 
 

          )()()()( xfxexcxd ++=                      (3) 

where 
 

      }{ }{ }{ }{08080808)( 23 +++= xxxxe                         (4) 

and  

              }{ }{0404)( 2 += xxf                                (5) 

 

This implementation yields logic optimizations since 

InvMixColumns shares logic resources with 

MixColumns. Our implementation is derived as follows: 

 

                  }{01)().( =• xdxc                               (6) 

 

If we multiply both sides of equation (6) by d(x) we 

obtain: 
  

                  )()().( 2 xdxdxc =•                             (7) 

where 
 

                     }{ }{0504)( 22 += xxd                        (8) 

The MixColumns and InvMixColumns can be 

implemented using shared logic resources as shown in 

Figure8. They are implemented in 4 LUTs input of the 

FPGA. 

 
Figure 8. Implementation of MixColumns and InvMixColumns 

 

3.5.  ENCRYPTION/DECRYPTION UNIT 
The AES encryption and decryption rounds substantially 

differ from the point of view of hardware 

implementations. One of the inconveniences arises from 

the fact that the AddRoundKey is executed after 

MixColumns in the case of encryption and before 

InvMixColumns in the case of decryption. Therefore, a 

switching logic is required to select appropriate data 

paths, which affects the performance, as shown in Figure 

9. 

 

 
Figure 9.  Implementation of the encryption/decryption unit 

 

3.6. IMPLEMENTATION OF THE KEY 

SCHEDULE 
  Our AES implementation is designed to perform both 

encryption and decryption. Since we did not see any 

advantage in computing round keys on-the-fly, we choose 

to implement the key schedule that precomputes all round 

keys. The implementation of the key schedule is shown in 

Figure11. It computes 32-bits of the key material per 

clock cycle; therefore, full key schedule execution takes 

44 clock cycles. The computed round keys are stored in a 

single Block RAM. 

 

4.  SYNTHESIS AND IMPLEMENTATION 

RESULTS  
We implemented our solution on Xilinx Virtex 

XC2V2000-4ff896. Simulation is done by ModelSim 

5.7c to verify the correctness of the design. The 

encryption and decryption unit has been verified using 

128 test vectors verification provided by the NIST. 
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Figure 11. Implementation of the key schedule 

 

This design has been synthesized using ISE Xilinx 6.3i, 

the summary of the area utilization in FPGA Xilinx is 

shown in table1. 

 
Table 1. Synthesis results 
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5. CONCLUSION 
In this paper, the feasibility of creating a very compact 

FPGA implementation of the AES was examined. The 

proposed folded architecture achieves good performance 

and occupies less area. This compact design was 

developed by the examination of each of the components 

of the AES algorithm using ECB mode and matching 

them into the architecture of the FPGA. 

The demonstrated implementation fits in Xilinx 

XC2V2000-4FF896 FPGA. Only 34% of the logic 

resources available in this device were utilized. This 

implementation can encrypt and decrypt data streams up 

to 235 Mbps.  

The Architecture has been tested and validated on the 

NIST vectors tests Benchmarks. However, in future 

work, we aim to test and validate our architecture on 

medical and satellite images. And adapt our design, in 

order to fit it in Xilinx Virtex II XC2V1000-4FG456C of 

the Memec Virtex II System Board . 
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