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ABSTRACT 

Best subsets regression is often used to identify a good 

regression model. The standard approach to assess statis-

tical significance for a best subsets regression model is 

flawed. A computationally intensive randomization algo-

rithm which corrects the problem is outlined and imple-

mented. Simulation studies show that this procedure cor-

rects a non-trivial problem that exists independent of 

sample size and is a procedure that is robust to the pres-

ence of influential observations. This procedure leads to a 

simple decision rule even with correlated predictors un-

like the use of a single probe. The proposed method is 

shown to retain power in a non-null situation. 

 

Keywords: Best subset regression, randomization, probe 

  variable, Type I error, bias. 

1. INTRODUCTION 

A first stage in the development of a good predictive 

model or a good classification rule is the identification of 

potentially useful predictor variables based on domain 

knowledge. The general type of model to be developed 

also needs to be defined. Depending on the circumstances 

the type of model to be considered could, for instance, be 

a linear regression model, or a logistic regression model, 

or a regression tree or a neural network. 

 

In exploratory model building the selection of appropri-

ate variables for inclusion in a final model is often done 

algorithmically. Thus for instance, algorithms such as 

backward elimination, forward selection or best subsets 

are routinely employed to develop regression models (see 

[5]). The motivation behind the development of the cited 

algorithms is to have a procedure that will identify a good 

subset of predictor variables. In this sense the ideas of 

variable selection and subset selection become synonym-

ous. The use of these algorithms in regression problems is 

widespread even though their use is known to be proble-

matic. The extent of the use of the algorithmic approach in 

model building is aptly summarized by George [4], who 

writes “The problem of variable selection is one of the 

most pervasive model selection problems in statistical 

applications. The use of variable selection procedures 

will only increase as the information revolution brings us 

larger data sets with more and more variables. The de-

mand for variable selection will be strong and it will con-

tinue to be a basic strategy for data analysis”. 

 

Variable selection problems from using backward eli-

mination, forward selection, best subset regression and 

other automated model building techniques are well do-

cumented in the context of multiple linear regression. In 

the main, investigations have been through simulation 

work in which the theoretical underpinning model as-

sumptions are satisfied and any deviation between simula-

tion results and anticipated theoretical results is therefore 

attributable to the variable selection technique. For in-

stance, the simulation work of Derksen and Keselman [2] 

give broad conclusions that automated selection tech-

niques overly capitalize on false associations between 

potential predictors and the criterion variable with too 

many purely random (noise) variables being wrongly clas-

sified as authentic (true) predictors. The inclusion of noise 

variables in a final model necessarily implies a model 

misspecification and incorrect inferences are drawn. 

 

Derksen and Keselman [2] also concluded that the in-

clusion of noise variables in a model can result in the fail-

ure to classify genuine (authentic) variables as being ge-

nuine predictors of the criterion. Thus, well established 

automated techniques can paradoxically inflate the proba-

bility of Type I errors and in some cases result in a loss of 

power. Moreover, the conclusions drawn by Derksen and 

Keselman [2] indicate that “the degree of correlation be-

tween predictor variables affected the frequency with 

which authentic variables found their way into the mod-

el”. Accordingly the rate at which Type I errors occur is 

quite problem dependent and there is no simple mechan-

ism for controlling this error rate. 
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The over capitalization on false associations leads to  

overfitting and gives rise to overly optimistic within sam-

ple estimates of goodness-of-fit and overly optimistic pre-

dictive ability which is not replicated on new data from 

the same population. Best subset regression solutions are 

based on the overall within sample maximization of the 

goodness-of-fit statistic, and these “best subset” solutions 

necessarily show the greatest upward bias in the estima-

tion of the population coefficient [6]. This problem is 

compounded when the number of potential predictor va-

riables J increases relative to the number of cases I [6]. 

For these reasons we consider an alternative technique to 

correctly quantify the Type I error rate in assessing overall 

model significance for best subset regression solutions and 

further show that the correction under the proposed me-

thod is a non-trivial correction especially in cases where J 

> I. 

 

In Section 2 we give a brief overview of the traditional 

least squares approach to determine overall significance of 

a best subset regression solution. In Section 3 we outline 

an alternative randomization approach. In Section 4 a de-

scription of a series of models is given that will be used to 

compare the performance of the randomization algorithm 

with the traditional approach. Results of the simulation, 

effects of number of predictors and effects of sample size 

are given in Sections 5 and 6 respectively. We additional-

ly discuss the robustness of the proposed procedure to 

influential observations (Section 7). Our discussion also 

casts doubt on the use of a single probe (Section 8) varia-

ble for assessing overall model significance.  

2. BEST SUBSETS REGRESSION 

Consider the classic linear regression model 

0 1 1 2 2 J JY X X Xβ β β β ε= + + + + +LL  (1) 

where Y is the dependent variable, with J  predictors 

1 2( , , )JX X XLL  and where ε  denotes a normally 

distributed normal random variable. Let iy ,  

1 2, ,.....,i i Jix x x , ( 1, , )i I= LL  denote I  independent 

cases generated from the above model. 

 

In best subsets regression, the best subset of size j  is 
that subset of j  predictor variables that maximizes the 

within sample prediction of the dependent variable, y , in 

a linear least squares regression. The percentage of varia-

tion in y  that is accounted for by a regression equation is 

the usual 2R  statistic, known as the coefficient of deter-

mination. In the following 2
jR  will be used to denote the 

2R  statistic for the best subset of size j. Overall signific-

ance of the best subset of size j  is judged using the stan-
dard F  statistic, 2 2/= R EF s s  where 2

Rs  is the mean 

square to regression, 2
Es  is the mean square error and 

overall model significance is judged by making reference 

to the F  distribution with 1 2( , ) ( , 1)j I jυ υ = − −  degrees 

of freedom. The relative magnitude of the observed value 

of the F statistic is quantified by the p-value with value of 

p < 0.05 traditionally taken to indicate an overall statisti-

cally significant subset of predictors. For a more detailed 

explanation of best subsets of regression see [5]. 

 

If the potential predictor variables jX , ( 1, , )j J= LL , 

are noise variables i.e. unrelated to Y  in as much as 

0β =j , ( 1, , )j J= LL , then the p-values for judging 

overall model significance, for any subset of size j , 

should be uniformly distributed on (0, 1). That is to say, if 

a researcher works at the α  significance level, and if 

none of the potential predictor variables are related to Y , 

then a Type I error in assessing significance of the overall 

best subset model should only be made %α of the time 

for any value (0,1)α∈ . We propose an alternative proce-

dure for assessing the overall significance of any best sub-

set of size j . This alternative procedure, a randomization 

or “fake variable” method, does not make explicit refer-

ence to the F distribution. 

3. FAKE VARIABLE METHOD 

Reconsider the sample data 1 2, , ,.....,i i i Jiy x x x , 

( 1, , )i I= LL  and let 2
jR denote the coefficient of deter-

mination for the best subset of size j, ( 1, , )j J= LL . Now 

consider where the order of cases for the predictor va-

riables in the data is randomly permuted but with the re-

sponse held fixed i.e. 1 2( , , , , )i i i Jiy x x xLL  

→ 1 2( , , , , )i k k Jky x x xLL . Note that this random 

permutation of predictor records ensures that the sample 

correlation structure between the predictors in the real 

data set is precisely preserved in the newly created ran-

domized data set (also known as the “fake data set”). The 

random permutation also ensures that the predictor va-

riables in the fake data set are stochastically independent 

of the response, Y, but may be correlated with Y in any 

sample through a chance arrangement. 

 

Best subsets regression can be performed on the newly 

created fake data set. Let 2
jS  denote the coefficient of 

determination for the best subset of size j, ( 1, , )j J= LL  

for the fake data set. If for subset j 2 2>j jS R  then the fake 

“chance” solution may be viewed as having better within 

sample predictability than the observed data. 

 

Naturally, for any given data set many instances of a 

fake data set may be generated simply by taking another 

random permutation. In what follows the proportion of 

instances that 2 2>j jS R  is estimated through simulation. 

This estimate is taken to be an estimate of the p-value for 

determining the statistical significance of 2
jR  for any sub-

set of size j. For a given data set, an increase in the num-

ber of random permutations will increase the accuracy of 
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the estimated value. The above procedure may be summa-

rized as follows: 

For given data and for a subset of size j 

1. Determine the best subset of predictors of size j and 

record the coefficient of determination 2
jR  

2. Set KOUNT = 0 

3. DO n = 1 TO N 

a. Randomly permute 1 , 2( ,....., )i i Jix x x independent-

ly of 1 2 i.e. ( , , , , )i i i i Jiy y x x x →LL  

1 2( , , , , )i k k Jky x x xLL  

b. For the newly created fake data set determine the 

best subset of size j  and record the coefficient 

of determination 2
jS  

c. If 2 2
j jS R>  Then KOUNT = KOUNT + 1 

4. ENDDO 

5. Estimated P-Value = KOUNT/N 

4. SIMULATION DESIGN 

For a specific application consider the model  

0 1 1 2 2 3 3 4 4Y X X X Xβ β β β β ε= + + + + +  (2) 

To illustrate the properties of the proposed technique, four 

specific parameter settings (referred to in the following as 

Model A, Model B, Model C, and Model D) with two 

different correlation structures have been considered. 

 

Model A is a genuine null model with 0 1β =  and with 

1 2 3 4 0β β β β= = = =  i.e. all proposed predictors are in 

fact noise variables and are unrelated to the outcomeY . 

For Model B we consider 0 1β = , 1 0.5β = , 

2 3 4 0β β β= = =  (i.e. one authentic variable and three 

noise variables). For Model C we consider 0 1β = , 

1 0.5β = , 2 0.2β = , and 3 4 0β β= = . For Model D we 

consider 0 1β = , 1 0.5β = , 2 0.2β = , 3 0.1β = , and 

4 0β = .  

 

In the following simulations each model is considered 

with potential predictor variables being (1) stochastically 

independent in which their correlation matrix is the identi-

ty matrix, and (2) strongly correlated with elements of the 

correlation matrix being 1 2( , ) 0.708,X Xρ =  

1 3 1 4( , ) 0.802,  ( , ) 0.655,  X X X Xρ ρ= = − 2 3( , )X Xρ =

2 4 3 40.757,   ( , ) 0.582,  and ( , ) 0.593X X X Xρ ρ= − = −  where 

 ( , )l mX Xρ  denotes Pearson’s correlation coefficient 

between lX  and mX . 

 

In all instances the error terms are independent identi-

cally distributed realizations from the standard normal 

distribution 2( 0,  1)µ σ= =  so that the underpinning as-

sumptions for the linear regression models are satisfied. In 

what follows simulations are reported based on 30=I  

cases per simulation instance and we later consider in-

creasing sample size and increasing the number of poten-

tial predictors 

5. SIMULATION RESULTS 

Fig. 1 is a percentile-percentile plot of the p-values ob-

tained from implementing the aforementioned algorithm 

for step j = 1 in best subsets regression for Model A with 

potential predictor variables being stochastically indepen-

dent. The vertical axis denotes the theoretical percentiles 

of the uniform distribution (0, 1) and the horizontal axis 

represents the empirically derived percentiles based on 

500 simulations. Note that the p-values based on the tradi-

tional method are systematically smaller than required 

indicating that the true Type I error rate for overall model 

significance is greater than any pre-chosen nominal signi-

ficance level, α . In contrast the estimated p-values based 

on the fake variable data set have an empirical distribution 

that is entirely consistent with the uniform distribution (0, 

1). 
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Fig. 1.  Percentile – Percentile plot for p-values for best subset 

of size 1 from 4 independent predictors, Model A. 

 

Under Model A, qualitatively similar results are ob-

tained for j = 1, 2, 3, both for potential predictors being 

independent, case 1, or correlated, case 2. For j = 4 there 

is no subset selection under the simulations and in these 

cases both the traditional method and the fake variable 

method have p-values uniformly distributed on (0, 1). 
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Fig. 2.  Percentile – Percentile plot for p-values for best subset 

of size 1 from 4 independent predictors, Model B. 
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Simulations under Model B, C, and D with independent 

predictors, case 1, or with correlated predictors, case 2, 

correctly show that the proposed method retains power at 

any level of α ; the power is marginally lower than the 

power under the traditional method (see Fig. 2.) but this is 

expected due to the liberal nature of the traditional method 

as evidenced in Fig. 1. 

6. EFFECT OF THE NUMBER OF PREDICTORS 

AND SAMPLE SIZE 

Simulations under a true null model (i.e. with all poten-

tial predictors being noise variables), for J = 4, 8, 16, 32, 

64, keeping the number of cases fixed, I = 30, have been 

performed. In all of these cases the simulations show that 

the p-value for subset significance using the proposed fake 

variable method is uniformly distributed on (0, 1). 
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Fig. 3.  Discrepancy between fake and traditional p-values for 

best subset of size 1 with different numbers of predictors. 

 

In each and every simulation instance the estimated p-

value in the fake variable method is not less than the p-

value under the traditional method. The distribution of the 

differences for j = 1 and J = 4, 8, 16, 32, 64 is summarized 

in Fig. 3. Note that the discrepancy tends to increase with 

increasing values of J and that this discrepancy is a subs-

tantive non-trivial difference. 

 

Simulations under a true null model (i.e. with all poten-

tial predictors being noise variables), for J = 4, 8, 16, 32, 

64, but with different sample sizes, I = 30, 60, 90, 120 

have been performed. In all of these cases the simulations 

show that the distribution of p-value for subset signific-

ance using the proposed randomized method is uniform on 

(0, 1). In each and every simulation instance the estimated 

p-value in the fake variable method is not less than the p-

value under the traditional method. Fig 4 summarizes the 

extent of the differences.  
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Fig. 4.  Distribution of the difference in p-values under the fake 

variable method and the traditional method for Model A. 

7. EFFECT OF OUTLIERS AND INFLUENTIAL 

OBSERVATIONS 

The simulations referred to in Section 5 have been re-

peated but with the inclusion of (i) a single outlying ob-

servation, (ii) a single influential observation, and then 

(iii) with a single influential outlying observation. 

 

The introduction of a single observation with high leve-

rage (
30,430,330,230,1 ,,, xxxx ) = (4, 4, 4, 4) under Model 

A (with either stochastically independent predictors or 

correlated predictors) did not grossly affect the distribu-

tion of p-values under the proposed randomization me-

thod. Likewise the introduction of a single observation 

with high leverage, ( 30,430,330,230,1 ,,, xxxx ) = (4, 4, 4, 

4), under Model B and with a simulated response consis-

tent with Model B did not affect the distribution of p-

values under the proposed randomization method irrespec-

tive of the correlation structure between predictors. Simi-

larly the introduction of a single observation with high 

leverage, ( 30,430,330,230,1 ,,, xxxx ) = (4, 4, 4, 4), under 

Model B but with a simulated response not consistent with 

Model B did not materially affect the distribution of p-

values under the proposed randomization method. 

8. A PROBE VARIABLE  

For comparative purposes, simulations were performed 

under Model A with the inclusion of a single probe varia-

ble. The simulations proceeded along the following lines: 

1. generate a data set ( iiiii xxxxy 4321 ,,,, ) under 

Model A 

2. generate realizations of a random variable Z where 

Z is stochastically independent of Y and indepen-

dent of X1, X2, X3, and X4. 

3. include the values of Z in the data set to form an 

augmented data set ( iy , ix1 , ix2 , ix3 , ix4 , iz ) 
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4. perform best subsets regression on the augmented 

data set 

5. repeat steps (2) to (4) N times and determine the 

proportion of times that Z is included in subset of 

size j. 

For brevity we merely note that the distribution of the 

proportion of times Z enters a best subset solution is de-

pendent on the extent of the correlation between the pre-

dictor variables. For instance, for a best subset of size j = 

1, the distribution of the proportion of the times that Z 

enters the solution with independent predictors has a mean 

of 0.2, with simulation estimated quartiles (Q1, Q2, Q3) = 

(0.06, 0.18, 0.32). However for the correlation structure 

(2) outlined in Section 4 the corresponding mean was es-

timated to be 0.26, and the corresponding quartiles were 

estimated to be (Q1, Q2, Q3) = (0.10, 0.24, 0.38). 

9.  CONCLUSIONS 

A computer based heuristics that allows the Type I error 

rate for a best subsets regression to be controlled at any 

pre-determined nominal significance level has been de-

scribed. The data sets created under the randomization 

procedure as described precisely retain the correlation 

structure as observed in the original data and this is criti-

cal to the approach. 

 

The outlined procedure corrects a known problem with 

best subsets regression. The given procedure corrects the 

bias in the overall p-value for best subsets regression. The 

correction is a non-trivial correction and even applies in 

those particularly problematic situations when the number 

of predictors exceeds the number of cases. 

 

Significance tests in classical least squares regression 

are based on the assumption that the underpinning error 

terms are independent identically distributed normal ran-

dom variables. Even when these assumptions are satisfied 

the p-values when estimated under best subsets regression 

are still biased, leading to wrong inferences. This is not 

the case with the outlined randomization procedure. 

 

In practice the underpinning normality assumptions are 

likely to be violated to some extent leading to further bias 

in the p-values in best subsets regression. In contrast the 

fake variable approach is based on the sample data and the 

estimation of the p-value does not explicitly rely upon 

distributional assumptions. The simulation work indicates 

that the randomization approach retains good statistical 

properties in the presence of an outlying and/or influential 

observation. In principle the same procedure could be 

used for other best subsets regression techniques (e.g. 

logistic regression models, or more generally the genera-

lized linear) or for other best subsets models (e.g. discri-

minant analysis). 

 

The fake variable approach, as described, is a randomi-

zation approach that preserves the sample correlation 

structure observed between predictors in each and every 

fake variable solution. In these respects the newly pro-

posed procedure is different from bootstrapping which is 

based on random sampling with replacement from sample 

cases. For a more detailed explanation of bootstrapping 

techniques see [3]. 

 

Stoppiglia et. al. [7] and Austin and Tu [1] have consi-

dered the use of a single fake variable (also known as a 

probe variable) to help determine the reliability of any 

final model. Stoppiglia [7] considers the problem of build-

ing a model many times over to determine the ranking of 

an independent random fake variable in relation to other 

variables in the model. The rationale is to retain those 

potential predictor variables that consistently rank higher 

than the fake variable that “probes” the solution. Austin 

and Tu [1] do something similar and include a randomly 

generated single fake variable in each of their bootstrap 

samples and then determine the proportion of times the 

fake variable is included in any final bootstrap model for 

comparison with the proportion of inclusion of the other 

variables. Note however neither [1] nor [7] give explicit 

decision rules for the use of a single fake variable. The 

simulation work outlined in Section 8 suggests that this 

intuitively appealing approach may be problematic for 

model building because the frequency of including a 

probe in solution is problem dependent. This does not 

necessarily invalidate the use of a probe for validation or 

use in confirmatory studies. Our work suggests that a more 

fruitful approach may be to work with multiple fake va-

riables. 

More generally the method given in this paper is strong-

ly suggestive of ways in which computer scientists can 

generate other fake variable algorithms to be used with 

other heuristics (e.g. backward elimination) and for use 

with other generic models (e.g. regression trees) and in 

doing so validly control error rates. 
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