
The Impact of Partitioning on Performance of

Database and Data Warehouse Systems

Dr. Abdallah Alashqur

Applied Science University

Amman, Jordan

alashqur@asu.edu.jo

Abstract
The increase in power and capacity of hardware systems coupled with the decrease of hardware costs made it possible

for institutions and corporations to store larger quantities of data in their database and warehouse systems than ever

before. Multi-terabyte databases are becoming more widely spread than in the past. This creates a need to improve the

performance of data retrieval and data manipulation operations in such large databases. Techniques such as bitmap

indexes, materialized views, and partitioning have been incorporated in many state-of-the-art database management

systems. In this paper, we provide an overview of the different partitioning techniques that have been introduced in the

literature, then we present the results of an analysis that quantitatively demonstrates the positive impact that partitioning

can have on query performance in database and data warehouse systems.

Key Words: database fragmentation, distributed database, disk reads, Oracle, indexing.

1. INTRODUCTION
Advanced optimization techniques have been proposed to

improve query performance in very large databases

(VLDB) and data warehouse environments. These

techniques include materialized views [1,2,3,11,16],

partitioning [6,5,14,17], parallel query processing [12,18],

and special indexing methods such as bitmap indexes and

join indexes [8,9,10,15,16].

Partitioning is a technique through which a relation (table)

is divided into partitions (fragments). Each partition is

stored on a different node in a multi-node architecture or in

a separate file segment in a single-node system. There are

two major types of partitioning as described in [17],

namely, vertical partitioning and horizontal partitioning. In

a vertical partitioning approach, a relation is divided into

subsets of attributes (columns or fields). Each subset of

attributes along with its tuples (rows) represents a partition.

These subsets of attributes are not necessarily disjoint, since

the key attributes may need to be replicated in all partitions.

The key attributes are used to relate data values from

different partitions, in order to reconstruct an entire tuple of

the relation. In a horizontal partitioning approach, on the

other hand, a relation is divided into subsets of tuples. Each

subset is a partition of the relation. A mix of horizontal and

vertical partitioning is desired in some cases when the

database is extremely large and geographically distributed.

The advantages of partitioning include (1) increased

database manageability and (2) improved performance.

Regarding manageability, a Data Base Administrator

(DBA) can, for example, gather statistics partition-wise,

therefore reducing the time slots needed for administrative

tasks. Also, relation re-organization and index re-creation

can be done partition-wise, which helps reduce the off-line

time needed for database maintenance. With respect to

performance, in the case of range and hash partitioning

(see section 2 for a description) the database optimizer

can benefit from partitioning by performing partition

elimination. This results in search being performed only

on the partitions that contain the tuples that satisfy the

search conditions, which is faster than searching the entire

relation. Also, in case of equi-join queries, joins can be

performed partition-wise (see section 2 for a description

of partition-wise joins), resulting in a considerable

improvement of performance. Partitioning can also

improve the performance of mass-deletions to remove

out-dated data. Instead of deleting one tuple at a time,

partitions as a whole can be dropped or archived to tape.

Dropping a whole partition substantially outperforms

tuple-at-a-time deletions.

In this paper we focus on horizontal partitioning as a

technique to achieve high performance levels in very

large databases and data warehouses. The objective of this

paper is to quantitatively demonstrate the performance

gains that can be achieved by applying some horizontal

partitioning strategies to large relations in a database. The

remainder of this paper is organized as follows. In Section

2, we provide an overview of horizontal partitioning

strategies, namely range and hash partitioning. We also

describe index partitioning techniques. In Section 3, we

describe the database used as a test platform, by

describing the schema and set of test queries that we used.

We also explain the partitioning strategies that were

applied to large relations and indexes in this database.

Section 4 provides an analysis of the test results and

shows a comparison between the performance after the

large relations were partitioned to the performance before

partitioning was applied. Conclusions are presented in

Section 5.

ACIT 2007, 26-28 November 2007, Lattakia, Syria 117

2. HORIZONTAL PARTITIONING –

OVERVIEW AND ADVANTAGES.

In this section we give a brief description of horizontal

partitioning of relations. We also describe index

partitioning.

2.1 RELATION PARTITIONING

Different horizontal partitioning strategies have been

described in the literature [4,5,14,17]. These partitioning

strategies are mainly round-robin partitioning, range

partitioning, and hash partitioning. A combination of range

and hash partitioning is possible and is referred to as mixed

partitioning. In round-robin partitioning, tuples of a relation

are randomly spread over the partitions following a round-

robin algorithm, where each partition resides on a different

disk. This balances the loading of data over disks. The

performance gain is achieved by enabling the application of

data predicates in parallel. The query optimizer does not

have knowledge of which partitions (disks) may contain the

data satisfying a predicate. Therefore, when an efficient

access path based on an index is not found, all partitions

have to be scanned. On the other hand, when range or hash

partitioning is employed, the optimizer may have enough

information to determine the partition where the data

satisfying a predicate is located and therefore searches only

that partition. To get a feel for the significance of

performance improvement, assume there is a large relation

that has 500 million tuples. If that relation is partitioned to,

say, 500 partitions, with an average of one million tuples

per partition, then if the optimizer knows which partition

contains the requested data, it will search only that

partition. This means a partition of only one million tuples

has to be searched as opposed to searching an entire relation

of 500 million tuples. This considerably improves query

response time.

Below we give a more detailed description of range and

hash partitioning since they are used in conducting the

performance analysis described in the remainder of this

paper. In range and hash partitioning techniques, one or

more attributes of the relation are designated as the

partitioning attributes. The values of the partitioning

attributes of a tuple determine the partition that the tuple

will be stored in.

Range Partitioning. If a relation is range-partitioned, then

a partition stores all tuples whose partitioning attribute

value lies within a given range. The range for each partition

has to be specified at relation creation time. For example, if

a relation is partitioned on a date attribute, and the range

specified is ‘monthly,’ then all the tuples that share the

same month value of the partitioning attribute go to the

same partition. An advantage of range partitioning is that

the query optimizer knows the partition in which a tuple is

stored by examining the partitioning attribute. For example,

a predicate on the date partitioning attribute of a relation R

of the form R.date_attr > ‘July 10, 2006’ and R.date_attr

< ‘August 25, 2006’ will lead the optimizer to narrow

down the search to the July and August partitions,

therefore eliminating all other partitions before starting

the search. Partition elimination is one of the powerful

optimization techniques that the optimizer can use. A

second optimization technique is referred to as partition-

wise joins. This technique is used when two relations are

range-partitioned the same way and there is an equi-join

condition between the two relations on the partitioning

attribute. For example if relations R1 and R2 are

partitioned monthly on date attributes date_attr1 and

date_attr2, respectively, and there is a join predicate of

the form R1.date_attr1 = R2.date_attr2, then tuples of

each partition of R1 are compared with tuples of the

corresponding partition of R2 and not with all the tuples

of R2. Partition-wise joins provide significant

performance improvement of join operations. Range

partitioning is appropriate when the number of distinct

values of the partitioning attribute is small. For example,

in a monthly partitioning on a date attribute, there will be

only 12 partitions per year. Therefore a relation whose

data span a 5-year period contains only 60 partitions.

Hash partitioning. Unlike rage partitioning, hash

partitioning is useful when the partitioning attribute has a

large number of distinct values. Similar to range-

partitioning, hash partitioning needs to be specified at the

time of creating a relation in the database. When a tuple is

inserted, a hash function is applied to the value of the

partitioning attribute. Based on the value returned by the

hash function, the tuple is stored in the right partition. The

query optimizer can employ partition-elimination and

partition-wise join strategies when hash partitioning is

used. However, partition-elimination requires that the

predicate has to be an equality predicate or a predicate

that uses the IN operator, and not a range predicate.

Mixed partitioning. This is a mixture of range and hash

partitioning. In this approach, a relation is range-

partitioned on a partitioning attribute, then each partition

is further hash-sub-partitioned based on another

partitioning attribute. When a tuple is inserted in such a

relation, the first partitioning attribute is examined to

determine the partition, then the second partitioning

attribute is examined to determine the sub-partition where

the tuple should be stored. So, tuples are not actually

stored in the first-level partitions but in their sub-

partitions. A first level partition (based on range

partitioning), in this case, merely serves as a logical

grouping of sub-partitions, and does not physically store

any tuples. In a mixed partitioning strategy, the query

optimizer can benefit from partition elimination and

partition-wise joins to achieve better performance. This

strategy is useful for partitioning extremely large relations

which require more than one level of partitioning in order

to reduce the size of partitions to a reasonable size.

ACIT 2007, 26-28 November 2007, Lattakia, Syria 118

2.2 INDEX PARTITIONING
In addition to partitioning relations, indexes can also be

partitioned. Just like relation partitioning, index partitioning

can also lead to performance improvements. If an index is

partitioned and the execution plan of a query involves

scanning the index, the optimizer in this case attempts first

to scan only those partitions of the index that satisfy the

predicate.

Index partitioning can be performed regardless of whether

the underlying relation is partitioned or not. When both a

relation and its index are partitioned, the index can be equi-

partitioned or non-equi-partitioned with the underlying

relation. An equi-partitioned index is an index that is

partitioned on the same partitioning attributes as the

underlying relation. On the other hand, a non-equi-

partitioned index is an index that is partitioned on different

partitioning attributes (see figures 1.a and 1.b).

In the equi-partitioned case, each index partition is used to

index tuples residing only in one relation partition. In other

words, each partition of the index corresponds to one and

only one partition of the underlying relation. In a non-equi-

partitioning scenario (Figure 1.b), on the other hand, one

index partition is used to index tuples that belong to

different relation partitions.

In addition to performance benefits, equi-partitioned

indexes provide other benefits. For example, a relation

partition can be dropped or archived along with its index

partition without having to rebuild the entire index.

3. SCHEMA AND QUERIES USED IN THE

PERFORMANCE ANALYSIS

In this section we describe the schema, database, and

queries used in conducting this performance comparison

analysis. We have created the schema shown in Figure 2, in

an Oracle database. This schema represents a financial

application.

As shown in Figure 2, a client can have multiple accounts

as represented by the Account relation. Each account has

multiple related tuples in the Account_History relation.

Each Account_History tuple has an Effective_Date that

identifies the start date of a period in the life span of an

account. Account_Holding relation stores the names and

IDs of the financial instruments (stocks, ETFs, mutual

funds, etc.) that were held by an account during each

period in its history. Some of those Account_Holding

tuples have related Account_Holding_Detail tuples that

show further detail about the holding. Accounts can be

grouped into account groups as represented by the

Account_Group relation.

In the schema of Figure 2, for clarity we show only the

key attributes. Each relation, however, contains many

other attributes (some of them more than 100 attributes.)

We populated the relations with test data. The number of

rows and storage size of the largest three relations are

shown below.

Relation name Num_of_Rows Storage_Size

Account_holdings 510 Million 114 GB

Account_Holding_Detail 260 Million 12.6 GB

Account_History 127 Million 4.1 GB

The above three relations were partitioned because of

their large sizes. We created seven test queries against this

database and ran the queries several times before

partitioning was applied, then took the averages of the

results. Next, we partitioned the largest three relations

listed above and ran the same seven queries several times

and averaged their results. Section 4 of this paper shows a

comparative analysis between the two sets of results.

Index

Partitions

Figure 1.b. Non-Equi-partitioned Index

Relation

Partitions

Index

Partiti

Figure 1.a. Equi-partitioned Index

Relation

Partition

ACIT 2007, 26-28 November 2007, Lattakia, Syria 119

Figure 2. Schema Used in Performance Analysis

The partitioning strategy that was employed for each of

these relations is as follows. Account_History was range-

partitioned on Effective_Date as the partitioning attribute.

Mixed partitioning was applied to the other two relations,

where they were both range-partitioned on Effective_Date,

then hash-sub-partitioned on Account_ID. The reason for

not sub-partitioning the Account_History relation was that

it was relatively small compared to the other two relations.

Those relations have several indexes. We equi-partitioned

the indexes with their underlying relations wherever

possible.

The seven test queries we created were named Query_1

through Query_7. The first 5 queries (Query_1 through

Query_5) joined the following relations and selected

attributes from them: ACCOUNT, ACCT_GRP,

ACCOUNT_GROUP_ MEMBERS, ACCOUNT_HISTORY,

ACCOUNT_ HOLDINGS, and CLIENT. The join conditions

were based on foreign keys.

The five queries differ only in the date range and number

of accounts used in WHERE conditions in each query. The

following shows the date range of each query and the

number of accounts used.

Qeury Data Range No. of Accounts

Query_1 1-day 50

Query_2 30-day 50

Qeury_3 90-day 50

Query_4 1-day 500

Qeury_5 30-day 500

Qeury_6 and Query_7 join the relation

ACCOUNT_HOLDING_DETAIL in addition to the

above relations used in the first five queries and selects

additional attributes from this relation. Here are the date

ranges and number of accounts used in these two queries.

Qeury Data Range No of Accounts

Query_6 30-day 50

Query_7 30-day 500

In other words, Query_6 is similar to Query_2 with

respect to the date range and number of accounts

restriction conditions, while Query_7 is similar to

Qeury_5. The purpose of adding

ACCOUNT_HOLDING_DETAIL in Query_6 and

Query_7 is to further assess the impact of partition-wise-

joins, which is an optimization technique described in

section 2 of this paper.

4. PERFORMANCE ANALYSIS
The approach we followed to conduct these tests was as

follows. First, we executed each of the seven queries five

times before partitioning the tables. Each time we took a

snapshot of Oracle statistics pertaining to four criteria,

namely, Elapsed Time, CPU Time, Disk Reads, and

Buffer Gets. In Oracle terms, Disk Reads represent

ACIT 2007, 26-28 November 2007, Lattakia, Syria 120

physical reads while Buffer Gets represent logical reads.

Some of the logical reads become physical reads if the

block sought is not found in memory. Therefore, the

number of physical reads is always a subset of logical

reads. Elapsed Time is the total time spent before Oracle

returned the query result; while CPU Time is the duration

of time the CPU was actually busy processing the query.

After executing each of the queries five times, we

averaged, for each query, the results of each one of the

four criteria. Next, we partitioned the largest three

relations as described in section 3 of this paper and re-

executed the same queries five times each. We took the

averages of statistics for each one of the four criteria. Note

that every time a query was re-run, we varied the ‘begin’

and ‘end’ date criteria and/or the specific accounts used in

the query in order to minimize the impact of caching.

Below we show the results pertaining to each one of the

four criteria and provide an analysis describing these

results. Each one of the diagrams described below shows

the average of the results before and after partitioning for

each of the seven queries.

4.1 ELAPSED TIME
This measures the total time in seconds that Oracle took

before delivering the result of the query. As Figure 4

shows, the elapsed time was substantially reduced after

the relations were partitioned.

We notice that the CPU time of Query_6 is smaller than

that of Query_5. This is because Query_5 returns data

pertaining to 500 accounts, while Query_6 returns data

pertaining to 50 accounts only. However, when

comparing Query_5 and Query_7 (both of which have

the same date range and number of accounts) we notice

that the elapsed time in the case of no partitioning is

larger in Query_7 than Query_5, because Query_7 joins

one additional table. However, the elapsed time of both

queries in the partitioning case is almost the same. This

is because Oracle uses partition-wise joins which limits

the search space of the join condition to only few

partitions regardless of the size of the underlying tables.

Elapsed_time

0

500

1000

1500

2000

2500

s
e
c
o
n
d
s

No_Partitioning With_Partitioning

No_Partitioning 227 387 476 667 1396 563 2311

With_Partitioning 45 87 370 91 557 121 544

Query_1 Query_2 Query_3 Query_4 Query_5 Query_6 Query_7

Figure 4 - Elapsed Time

ACIT 2007, 26-28 November 2007, Lattakia, Syria 121

4.2 CPU TIME
The figure below depicts the CPU time for the partitioning

and no partitioning cases. Partitioning has resulted in a

sharp decline of CPU time for all queries.

Because of partitioning, the amount of data that has to be

read from disk into memory is smaller. Therefore the

amount of data that the CPU has to process is smaller,

resulting in smaller CPU time.

Figure 5 – CPU Time

Figure 6. Disk Reads

CPU Time

0

20

40

60

80

100

120

s
e
c
o
n
d
s

No_Partitioning With_Partitioning

No_Partitioning 58 77 82 59 91 77 107

With_Partitioning 4 3 8 5 8 4 17

Query_1 Query_2 Query_3 Query_4 Query_5 Query_6 Query_7

Disk Reads

0

100000

200000

300000

400000

500000

600000

No_partitioning With_Partitioning

No_partitioning 207637 359022 364512 237933 478753 361058 519582

With_Partitioning 3754 4985 17417 3164 14937 5730 18907

Query_1 Query_2 Query_3 Query_4 Query_5 Query_6 Query_7

ACIT 2007, 26-28 November 2007, Lattakia, Syria 122

Figure 7. Buffer Gets

4.3 DISK READS
This is the criterion that shows the biggest difference

between the partitioning and no partitioning cases.

Partitioning causes search to be narrowed down to the

specific partitions that contain the data. Oracle preprocesses

the query and based on the query’s restriction conditions, it

creates an execution plan that involves only the needed

partitions.

This resulted in a substantial I/O improvement as shown in

the figure and alleviated the pressure on the I/O subsystem.

In addition, since the amount of data brought to memory is

smaller in case of partitioned tables, there is a better chance

that this data is cached in memory for a longer period

before it is aged-out. This improves performance of other

queries that may need the same data since they can find this

data via logical reads as opposed to expensive physical

reads.

4.4 BUFFER GETS
Buffer Gets represent logical reads, that is reads that were

satisfied from memory without having to go to disk. Again,

by partitioning the large relations, logical reads have been

reduced for every one of the test queries as shown in Figure

7.

5. CONCLUSION
In this paper, we provided a brief classification of

partitioning strategies as applied to relational database

systems. Both relations and indexes can be partitioned.

Partitioning can be horizontal or vertical. Horizontal

partitioning can be further classified into range

partitioning and hash partitioning. A combination of range

and hash partitioning can also be applied, which is

referred to as mixed partitioning. Performance gain is

achieved because the query optimizer component of a

database management system has knowledge of the

partitioning criteria applied to each table or index.

Therefore, it can use that information to perform partition

elimination and partition-wise joins, which are two

powerful optimization techniques.

We demonstrated the powerful and positive impact that

partitioning has on database performance by conducting a

comparison analysis on a relatively large prototype

database that was implemented in Oracle. The database

was populated with large quantities of data that simulated

multi-year financial data entries. Next, we designed seven

queries that covered a wide range of restriction conditions

and joins. Those queries were executed before

partitioning was applied and then after partitioning was

applied. Then we compared the ‘before’ and ‘after’ results

along four dimensions, namely, elapsed time, CPU time,

buffer gets (logical reads), and physical reads. The

analysis demonstrated that partitioning resulted in a

substantial improvement in overall query performance in

all four dimensions for every one of those queries.

ACIT 2007, 26-28 November 2007, Lattakia, Syria 123

ACKNOWLEDGMENT
Publishing this research has been supported by the

Deanship of Research and Graduate Studies at Applied

Science University in Amman, Jordan.

REFERENCES
[1] S. Agrawal, S. Chaudhuri, V.R. Narasayya,

"Automated selection of materialized views and

indexes in SQL databases", in Proc. 26th Int. Conf.

on Very Large Data Bases (VLDB), pp. 496-505,

2000.

[2] E. Baralis, S. Paraboschi, and E. Teniente,

"Materialized view selection in a multidimensional

database," in Proc. 23rd Int. Conf. on Very Large

Data Base (VLDB), pp. 156-165, 1997.

[3] L. Bellatreche, K. Karlapalem, and Q. Li,

"Evaluation of indexing materialized views in data

warehousing environments", in Proc. Int. Conf. on

Data Warehousing and Knowledge Discovery

(DAWAK), pp. 57-66, 2000.

[4] L. Bellatreche, K. Karlapalem, M. Schneider and M.

Mohania, "What can partitioning do for your data

warehouses and data marts", in Proc. Int. Database

Engineering and Application Symposium (IDEAS),

pp. 437-445, September 2000.

[5] L. Bellatreche, M. Schneider, M. Mohania, and B.

Bhargava, "Partjoin : an efficient storage and query

execution design strategy for data warehousing",

Proc. Int. Conf. on Data Warehousing and

Knowledge Discovery (DAWAK), pp. 296-306,

2002.

[6] L. Bellatreche, M. Schneider, H. Lorinquer, and M.

Mohania. “Bringing together partitioning,

materialized views and indexes to optimize

performance of relational data warehouses.”

Proceeding of the International Conference on Data

Warehousing and Knowledge Discovery

(DAWAK’2004), pages 15–25, September 2004.

[7] K. P. Bennett, M. C. Ferris, and Y. E. Ioannidis. “A

genetic algorithm for database query optimization.”

in Proceedings of the 4th International Conference

on Genetic Algorithms, pages 400–407, July 1991.

[8] S. Chaudhuri and V. Narasayya., "An efficient cost-

driven index selection tool for Microsoft sql server",

in Proc. Int. Conf. on Very Large Databases

(VLDB), 1997, pp. 146-155.

[9] C. Chee-Yong, "Indexing techniques in decision

support Systems", Ph.D. Thesis, University of

Wisconsin, Madison, 1999.

[10 H. Gupta et al., "Index selection for olap," in Proc.

Int. Conf. on Data Engineering (ICDE), pp. 208-

219, 1997.

[11] H. Gupta and I. S. Mumick, "Selection of views to

materialize under a maintenance cost constraint," in

Proc. 8th Int. Conf. on Database Theory (ICDT), pp.

453-470, 1999.

[12] A. Gounaris, R. Sakellariou, N. Paton, and A.

Fernandes. “Resource scheduling for parallel

query processing on grids.”5
th
 IEEE/ACM

International Workshop on Grid Computing

(GRID 2004), Pages 396-401, November 8, 2004,

Pittsburgh, USA.

[13] T. Loukopoulos and I. Ahmad. “Static and

adaptive distributed data replication using genetic

algorithms.” in Journal of Parallel and Distributed

Computing, 64(11):1270–1285, November 2004.

[14] Nicola, M. ‘’Storage Layout and I/O Performance

Tuning for IBM Red Brick Data Warehouse’’,

IBM DB2 Developer Domain, Informix Zone,

October 2002.

[15] P. O'Neil and D. Quass., "Improved query

performance with variant indexes", in Proc. ACM

SIGMOD Int. Conf. on Management of Data, pp.

38-49, 1997.

[16] A. Sanjay, G. Surajit, and V. R. Narasayya,

"Automated selection of materialized views and

indexes in microsoft sql server", in Proc. Int. Conf.

on Very Large Databases (VLDB), pp. 496-505,

September 2000.

[17] A. Sanjay, V. R. Narasayya, and B. Yang.

“Integrating vertical and horizontal partitioning

into automated physical database design.”

Proceedings of the ACM SIGMOD International

Conference on Management of Data, pages 359–

370, June 2004.

[18] Vijayshankar Raman, Wei Han, and Inderpal,

“Narang Parallel Querying with Non-Dedicated

Computers”, Proceedings of the 31
st
 international

conference on Very Large Databases. Trondheim,

Norway from August 30 to September 2, 2005.

pages 61-72.

ACIT 2007, 26-28 November 2007, Lattakia, Syria 124

