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ABSTRACT 

Wavelet transform is a useful tool for function 

estimation and signal processing; nevertheless wavelets 

are limited to small dimensions. The combinations of 

wavelet transform (WT) and neural networks (NN) will 

lead to overcome these limitations of large dimension 

efficiently. Wavelet networks (WN)s have been 

developed for their abilities of self-learning and self 

organizing. WNs have been successfully demonstrated 

to have potential in many applications. Although, 

controller design can be considered as signal 

approximation, and wavelet transform is a powerful 

tool in this field, yet its applications in the process 

control and identification areas have not been 

investigated deeply . In this paper a new structure of 

Fuzzy Wavelet Network (FWN) is proposed to identify 

Multi-input Multi-output complex nonlinear systems. It 

was found that the FWN performance depends on the 

selection of mother wavelet basis function and the 

associated number of wavelons. 

The FWN is used to replace the linearization feedback 

of a robot arm that has four inputs and four outputs. 

Thus the FWN was employed as an identifier and it 

gave good results and fast convergence for the non 

parametric function under consideration in comparison 

with conventional Neural Network as well as, it was 

shown that one set of data is sufficient during off-line 

learning. 

In Two Flexible Joints Robot Manipulation under 

consideration, the static learning of FWN structure can 

achieve robustness behavior in dynamic control. The 

stiffness of the FWN to avoid change of robot 

parameters was up to ±50% of its nominal values. 
 

Keywords: identification, wavelet network, fuzzy logic, 

fuzzy wavelet network and robot manipulation 

 

1. INTRODUCTION 
obot is a nonlinear system by nature, so that 

conventional linearization procedures cannot 

implement a perfect accurate controller design. A 

feedback linearization technique of a nonlinear system 

performs a methodological procedure for robot control 

system design. The basic idea is to construct a nonlinear 

control law as a so-called inner loop control which 

theoretically exactly linearizes the nonlinear system by 

suitable state space change of coordinated [1]. Then the 

design is completed by an outer loop control that 

satisfies the required performance such as transient 

characteristics tracking a reference signal, disturbance 

rejection… etc. Such theoretical technique has sever 

drawback when such controllers are implemented in 

practice; specifically they have no acceptable degree of 

robustance. Small changes in system and/or controller 

may lead to unsatisfactory behavior or unstable system. 

In this chapter the control laws derived by linearization 

techniques as state in [1] will be replaced by the 

proposed FWN obtained in section 2. 

 

2. FUZZY WAVELET NETWORK (FWN) 
The main block diagram of this proposed Fuzzy 

Wavelet Network FWN is given in Figure 1, this 

structure introduces a multi input multi output MIMO 

function approximator model. It consists of four layers 

namely: the input layer, Fuzzification layer, rule layer 

and defuzzification layer [2].  

 

 

Figure 1: Structure of Fuzzy Wavelet Networks 

 

the computation of the FWN is illustrated in the 

following steps: 

step one: the fuzzification setup: in this step it is 

necessary to build the fuzzification membership through 

the following procedure.  

a) the input to the structure, input layer, is xi and its 

outputs oi will be given to the fuzzification layer 

,ixio =       Ni ,....,2,1= ……………………. (1) 

where n  is the number of inputs 

b) for each fuzzy term jiA in jth  rule, associated with 

ith  input io , the membership 
jiAµ is 

)(,).()( tbatixtA jijiji
ψµ = ……………….. (2) 

R
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the structure of WN [3,4] is extended to be used here as 

a membership function by translating and dilating the 

mother wavelet basis function to build up fuzzification 

layer. It is shown that a set of 10 to 40 wavelet basis 

functions memberships is required for its success.  

step two: selection of implicator rule: this requires 

setting of the implicators rules that are necessary for 

convergence of the network, the number of implicators 

used here is equal to the number of memberships, which 

use mini-operation implicator [5]. 

step three: the defuzzification setup: the fourth layer 

in FWN is the output layer, which realizes the k-th 

approximated output by:  

∑=
=

J

j
jjkk ywz

1

ˆ ……………………….…... (3) 

where J is the number of wavelet filters that are used as  

membership functions for each input and J rules are 

used with minimum implicator rule to produce crisp 

output value. 

step four: the learning algorithm of the proposed 
FWN: here the gradient descent algorithms for tuning 

the parameters, dilations jia  , translations jib and 

weights jkw  of the FWN is used. 

first the following cost function (E) for this case was 

used [6]: 
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where )(tzk  is the kth desired output, )(ˆ tzk is the kth 

approximated output of FWN, K is the number of 

output signals and T is the length of the output signal. 

the training algorithm, that is extended from WN 

training algorithm, the parameters of FWN, dilations 

jia  , translations jib and weights jkw , are updated 

such as to minimize the cost function (E) defined in 

equation (4). thus the FWN weights can be update using 

the following equations: 
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where:  

 

∑
∂
∂

=
∂
∂

−=
∂
∂

∑
∂
∂

−=
∂
∂

∑−=
∂
∂

=

=

=

T

t jiji
jki

ji

T

t ji
jki

ji

T

t
i

jk

b

E

b
wote

a

E

b
wote

b

E

tote
w

E

1

1

1

,
)(

)(

,
)(

)(

),()()(

τ
τψ

τ

τψ

τψ

… (6) 

Where: 

ji

ji

a

bt −
=τ , i is the input indicator, j is the rule 

indicator, k is the output indicator, Aµ  is the 

membership function which is here  considered as the 

mother wavelet basis function and io is the output of 

the input layer. An adaptive learning rate is used here to 

updating FWN parameters. Also in learning algorithm, 

the modification (updating) is done only in the gene that 

activates (or is firing) specific rule. 

an attempt was made in order to simplify this procedure 

in a form which is clearly denoted in software 

engineering as the mechanization of proposed FWN or 

the cycle time and it is shown in Figure 2. 
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Figure 2: Mechanization of the proposed FWN 

 

3. TWO FLEXIBLE JOINTS ROBOT 

MANIPULATOR SIMULATION 
The simulation of two flexible joints robot manipulator 

considers the following parameters [7].  

I : Moment of inertia of the load    =1 
2.. smkg  

M : Rotor mass                            = 1 kg  
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g : Gravity  = 9.8  m/
2s  

l  : Length of the arm = 1 m 

K :Stiffness coefficient of the motor= 100 Amkg /.  

J : moment of inertia of the motor   = 1 
2.. smkg  

 

The nonlinear state space of the robot manipulator is 

given by the following model 
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Applying the linearization technique, the state 

transformation (feedback control law) and the control 

action (feed forward control law) are respectively given 

by: 

)42(2)1cos(4

)31()1sin(3

22

11

xx
I

k
xx

I

Mgl
y

xx
I

k
x

I

Mgl
y

xy

xy

−−−=

−−−=

=

=

 

 

)42(1002)1cos(8.94

)31(100)1sin(8.93

22

11

xxxxy

xxxy

xy

xy

−−−=

−−−=

=

=

……...... (8) 

 

))1cos()(31(

))1cos(2
2

)(1sin(

x
I

Mgl

J

k

I

k
xxJ

I

k
x

I

Mgl
xx

k

MglJ
v

k

IJ
u

++−−

++−=
 

 

])))1cos(8.9100100)(31(100

)100)1cos(8.92
2)(1sin(8.9

100

1

xxx

xxxvu

++−+






 ++−=

… (9) 

 
The outer loop design is completed by design of an 

optimal state feedback regulator for the linearized 

model (
4

1
s
), [7]. the normalized gain matrix is: 

]0068.00861.0454.01[=K . 

 
Figure 3 shows both outer and inner loop design based 

on linearization technique and optimal control theory f 

or the considered two flexible joints robot manipulator. 
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Figure 3: Robot and Control system structure using feedback 

linearization technique 
 

A Matlab program is performed to obtain the nominal 

values of the system states, transformed states and the 

control input, and on the other side to link this program 

with the proposed software of implementing FWN. 

Also a Simulink setup is performed as shown in Figure 

4 for performance evaluation when the robot 

manipulator changes its parameter. 

The objective now is to replace the feedback control 

law given in (8) by the proposed FWN of 40-Rasp1 

structure and evaluate the controlled system response 

for nominal conditions. Figure 5 shows the system step 

responses for both cases; with linearized control law 

and with proposed FWN. As it is clearly seen no 

significant difference is there, which indicates 

successful replacement. However it is important to say 

that till now no dynamic charges have been considered 

to test the proposed FWN and the successful 

replacement is nothing than a static fitting of data to 

certain nonlinear function. In the next section a dynamic 

situation will be considered. 
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Figure 4: Simplified Simulink model design of Feedback 

Linearized controller for single link robot manipulator 

system 

 
Figure 5: System Step responses using conventional control 

law and FWN in Feedback controller 

 

4. ROBUSTNESS PERFORMANCE OF 

FWN CONTROLLER 
Due to many physical environments the value of robot 

parameters may be deviated from their nominal values, 

and hence the robustness degree of any used controller 

must be under investigation. In [7] it is shown 

thoroughly how the performance of the robot 

manipulator controlled by feedback linearization 

technique is degraded from its nominal response as the 

parameters change. In what follows the proposed FWN 

will be used as a feedback controller where the 

nonparametric dynamic functions x1, x2, x3 and x4 

represent the elements of the input vector to FWN. 

Different hypothetical cases of changing the moment of 

inertia of the motor J and the moment of inertia of the 

load I are within specific ranges. 

The strategy of simulation will be of two phases. First 

to replace the nonlinear function y3 by the proposed 

FWN keeping y4 unchanged and in the second phase to 

replace y4 keeping y3 unchanged. Such independency 

gives more clear view of implementing the FWN as a 

controller. For both phases the 40-Rasp1 structure 

whose weights, dilations and translation are updated up 

to 1000 iteration to minimize the error to less than 410− . 

The final values of the weights, dilation and translation 

are given in Appendix B. Figures 6and 7 shows the 

performance of FWN for both y3 and y4 respectively. 

F
.F
. N
on
li
ne
ar
 

O
ut
er
 lo
op
 

In
ne
r 
lo
op
 

O
sc
il
lo
sc
op
e 
m
on
it
or
s 
 

O
sc
il
lo
sc
op
e 
m
on
it
or
s 

In
pu
t 

si
gn
al
 

L
in
ea
r 
C
om
pe
ns
at
or
 

R
ob
ot
 

ACIT 2007, 26-28 November 2007, Lattakia, Syria 245



 

 

 

 
Figure 6 : Adaptive Fuzzy Wavenet Simulation and 

Performance for 40-Rasp1 a) MSE vs. of iteration b) desired 

& approximated y3. 

 
 

Figure 7: Adaptive Fuzzy Wavenet Simulation and 

Performance for 40-Rasp1 a) MSE vs. of iteration.  

b) desired & approximated y4. 

4.1 SIMULATION RESULTS FOR WN y3 

CONTROLLER 
In this phase, the motor moment of inertia J is varied up 

and down of its nominal value by 50%. Figure 8 shows 

the robot manipulation normalized responses for unit 

step input when J is increased up to 50% of its nominal 

value. The maximum increment of the overshoot is less 

than 2% as J is increased by 50%. Similarly Figure 9 

illustrates a maximum steady-state error of about 0.04. 

Therefore one can say that the performance of the 

proposed FWN controller in such dynamic 

environments exhibits robust behavior. However as the 

load moment of inertia I is varied such robustness can 

not be achieved and the system response can only be 

accepted for %5±  as shown in Figures 10&11. These 

butterfly figures indicate the necessity to train the 

network to more than one input data set as it is done so 

far, or to train the network on-line. 

 

 

 

Figure 8: Unit step response as J  increases up to 50% 

(a) the full range of values from 0 to 200 unit time. 

 (b) After enlarging the value from 90 to 180 unit time 
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Figure 9: Unit step response as J  decreases down to -

50% (a) the full range of values from 0 to 200 unit time. 

 (b) After enlarging the value from 100 to 200 unit time 

 
Figure 10: Unit step response as I  increases up to 5% 

 
Figure 11: Unit step response as I decreases down to -

5% 

 

4.2 SIMULATION RESULT FOR FWN y4 

CONTROLLER 
Now the proposed FWN stands as a controller instead 

of the control law described by the nonlinear function y4 

and the two system parameters J and I are allowed to 

vary: Figures 12&13 show as before the system 

response for J variations within %50±  of the nominal 

value. The maximum increment of the overshoot is not 

more than %5.1± , while the maximum steady-state 

error is 0.017. also Figures 14&15 show the case when 

the I parameter changes within %50± . Unlike the case 

with FWN y3 controller the responses with %50±  

changes of I show robust result. 

 

 
Figure 12 : Unit step response as J  increases up to 50% 

(a) the full range of values from 0 to 200 unit time. 

 (b) After enlarging the value from 110 to 200 unit time. 
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Figure 13: Unit step response as J  decreases down to -

50% 

(a) the full range of values from 0 to 200 unit time. 

 (b) After enlarging the value from 105 to 200 unit time. 

 
Figure 14 : Unit step response as I  increases up to 50% 

(a) the full range of values from 0 to 200 unit time. 

 (b) After enlarging the value from 115 to 200 unit time 

 

 
Figure 15 : Unit step response as I  decreases down to -

50% 

(a) the full range of values from 0 to 200 unit time. 

(b) After enlarging the value from 80 to 200 unit time. 

 

By comparing NN results in [7], with those acquired by 

using FWN, it is found that NN solution is safer from 

the following limitations: 

1) The structure of NN is given by large amount of trial 

and error. Hence, it is very sensitive to the change in the 

parameters of the system. Thus changing the data set of 

operation in a new desired structure must be redesigned 

that needs a hard searching process using the trial and 

error procedure. 

2) The NN structure must be learned all the desired 

ranges of parameters changes. Hence it can’t satisfy the 

unknown changes. 

3) Capability of the system is limited to moment of 

inertia of the load and moment of inertia motor on 

which its range of change will be between -25% to 25% 

of its nominal values. 

From the same figures the FWN overcomes these 

limitations. It can be clearly defined that FWN affords 

wider range of parameters change up to 50% from its 

nominal values. Moreover the facility is offered from 

using FWN as rapid reaching of the optimal structure 

with respect to those using NN, which requires many 

attempts of trial and error. Besides, FWN needs only 

one set of nominal data for its training procedure and it 

is capable of standing unknown changes within 50% of 

the nominal values. 
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5. CONCLUSION 
The WN was developed to a new structure called Fuzzy 

Wavelet Network (FWN). This structure was employed 

and tested as an identifier of a complex and nonlinear 

Multi-Input Multi-Output function. Firstly, it can be 

concluded that this structure is an alternative to neural 

network to approximate nonlinear system. Then, this 

structure was used to achieve identification. Therefore, 

the proposed structure was useful for control system 

design of unknown (or uncertain) nonlinear systems. It 

can be concluded from the simulation results, that 

approximation errors can be successfully attenuated 

using the proposed FWN design method within a 

desired Wavelet basis function, thus identification of 

MIMO is achieved. Significant contribution is 

dedicated to algorithms that were proposed as 

identification structures of unknown nonlinear system. 

This is a very difficult problem especially when the 

black-box systems are highly nonlinear and under 

parameter changes environments. Hence, a structure 

named Fuzzy Wavelet Network (FWN) was proposed 

and simulated. It was used within a fuzzification 

defuzzification structure to achieve the adaptation off 

learning for rapid access to the goal of identification. As 

well as, the Adaptive Fuzzy Wavelet Network structure 

was implemented to achieve feedback control of a 

complex four inputs two outputs system. It was shown 

that this structure can be used to improve the 

performance of the trained network with fast 

convergence, minimum variability between runs, and 

high complexity to learn and track of unknown 

nonlinear systems. It is well known that the worst 

scenario to all of the control schemes, in terms of 

performance, occurs when of the plant system are 

changed. The conventional scheme with NN shows that 

it requires a longer time adapting to changes and 

performs poorly to system parameter changes. It can be 

concluded from the comparison of the performance of 

this new structure with the NN that for the same plant it 

gives a robust implementation. The new structure 

withstands parameter change of up to 50% over the 

conventional NN. 
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