

HRO ENCRYPTION SYSTEM
KHALID MOHAMMAD NAHAR, OSAMA MAHMOUD ABU ABBAS, AND MOHAMMAD AHMAD TUBISHAT

Computer Science Department, IT Faculty, Yarmouk University, Jordan

ABSTRACT

Encryption is the process of translating data into a secret code. This paper intends to introduce a new encryption system

(HRO system). This system is a combination of three known algorithms: hash based encryption algorithm, RSA

algorithm, and one-time pad algorithm. The purpose of HRO system is to expedite the encryption and decryption

processes and to reduce the vulnerability of the system to external attacks. HRO system uses hash function and random

number generator to increase security. Some conclusions that are arrived at concern the performance of the algorithm,

hash function, random number generator and the time of encryption and decryption.

Keywords: Encryption, Decryption, Hash Based Encryption, RSA, One-time pad, Collisions.

 1. INTRODUCTION
 "Computer security" refers to techniques employed
to ensure that the stored data cannot be accessed or
compromised except by authorized individuals. Most
security measures involve data encryption and
passwords. Data encryption is the translation of data
into a form that is intelligible only through a specific
deciphering mechanism. Encryption is the most
effective way for achieving data security [11, 12, 10].
 Cryptography is the art of protecting information by
transforming (encrypting) it into an unreadable format
called ciphertext. Only those who possess a secret "key"
can decipher (or decrypt) the message into a plaintext.
Although modern cryptography techniques are virtually
unbreakable, encrypted messages can still be broken by
cryptanalysis (referred to as codebreaking). As the
Internet and other forms of electronic communication
became more prevalent, electronic security has become
increasingly important [11, 12, 2, 10].
 To improve the security level, some researchers
worked on improving the encryption algorithms, others
implemented new ones, while a third group studied and
compared different encryption algorithms to select the
most efficient. Some of the previous studies that show
and analyze new methodologies and improve old ones
in different fields and applications are discussed below.
But it is important to note that these studies differ from
our HRO system in methodology and analysis.

• Kwok-Wo Wong, Sun-Wah Ho, and Ching-Ki Yung
modified the chaotic cryptographic scheme so as to
reduce the length of the ciphertext to a size slightly
longer than that of the original message. Moreover,
they introduced a session key in the cryptographic
scheme so that the length of the ciphertext for a given
message is not fixed [7].

• Kwok-Wo Wong extended the chaotic cryptographic
scheme so that it can perform both encryption and
hashing to produce the ciphertext as well as the hash
value for a given message. He analyzed the collision
resistance of the proposed hashing approach [5].

• H.S. Kwok and Wallace K.S. Tang proposed a fast
chaos-based image encryption system with stream
cipher structure. The proposed keystream generator
did not only achieve a very fast throughput, but also

passed the statistical tests of up-to-date test suite even
under quantization [6].

• Jun Wei, Xiaofeng Liao, Kwok-wo Wong, and Tao
Xiang proposed a new chaotic cryptosystem. Instead
of simply mixing the chaotic signal of the proposed
chaotic cryptosystem with the ciphertext, a noise-like
variable is utilized to govern the encryption and
decryption processes. This adds statistical sense to the
new cryptosystem [4].

• Rastislav Lukac and Konstantinos N. Plataniotis
introduced and analyzed a new secret sharing scheme
capable of protecting image data coded with B bits
per pixel. The proposed input-agnostic encryption
solution generates B-bit shares by combining bit-level
decomposition/stacking with a {k, n}-threshold
sharing strategy. They achieved perfect reconstruction
by performing decryption through simple logical
operations at the decomposed bit-levels without the
need for any postprocessing operations [9].

• Chien-Yuan Chen, Cheng-Yuan Ku, and David
C.Yen found ways to utilize the LLL algorithm to
break the RSA system even when the value of d is
large. According to their proposed cryptanalysis, if d

satisfes |λ - d| < N0.25, the RSA system will be
possible to be resolved computationally [2].

• Chang-Doo Lee, Bong-Jun Choi, and Kyoo-Seok
Park proposed a block encryption algorithm which is
designed for each encryption key value to be applied
to each round block with a different value. This
algorithm needs a short processing time in encryption
and decryption, has a high intensity, and can apply to
electronic commerce and various applications of data
protection [1].

• Mohammad Peyravian, Allen Roginsky, and Nev
Zunic described a symmetric-key encryption
algorithm based on the use of an underlying one-way
hash function. It is computationally more efficient
and, most importantly, more secure than using
traditional symmetric encryption tools [8].

• Timothy E. Lindquist, Mohamed Diarra, and Bruce R.
Millard presented an implementation of One-Time
Pad as a Java Cryptography Architecture (JCA)
service provider, and demonstrated its usefulness on
Palm devices [12].

ACIT 2007, 26-28 November 2007, Lattakia, Syria 73

2. METHODOLOGY
 Our methodology in HRO system can be
summarized as follows:
1. Creating an array of 100 elements (the charactecrs of
the text). Each 16-bit element is created randomly by
a random number generator.

2. Creating a 16-bit one-time pad (OTP) element
randomly by a random number generator and storing
this element somewhere in the array created in step 1.

3. Building the hash table depending on the array
elements, one-time pad algorithm and a hash function.

4. Encrypting the array, including the one-time pad
element, by RSA algorithm.

5. Sending to the receiver the encrypted array along with
the one-time pad element and the encrypted message.

6. Decrypting, by the receiver, the array using RSA and
one-time pad algorithms.

2.1 BUILDING THE ARRAY
 In this phase an array of 100 elements is created.
This process is performed only once. It is possible to re-
create this array, for example once a month, to increase
the security and to reduce the possibility of hostile
attacks. Each element is 0/1 16-bit long and represents
one character of the text (see figure 1). The characters
used are: capital letters A-Z (26 characters), small
letters a-z (26 characters), the digits 0-9 (10 characters),
in addition to all the special characters [] () _ ~ ! @ # $
% ^ & * + - / + \ | < = > . , ; ’ ” ? { } : ` enter, tab and
the blank (36 characters).
 The elements of this array are created randomly by a
very powerful random number generator that changes
its seeds every second. Because each element is 16-bit
long, then the random number generator can choose
each element from 216 elements (permutations). Every
time an element is created, we have to ensure that it was
not previously created by searching the elements of the
array that were created earlier. If the created element is
already found in the array, then the random number
generator must retry to create a different element, and so
on. Because the number of permutations that the
random number generator can choose from is very large
(216), the chance of duplication or redundancy is very
unlikely.
 The size of the array is equal to the number of the
characters of the text that can be used (explained above)
plus one for the one-time pad element.

Figure 1: The general format of the array

 … … … …

A B Z a b z 0 1 9 ! #

2.2 BUILDING ONE-TIME PAD ELEMENT
 An 16-bit OTP element is created randomly by the
same random number generator that is used in building
the array. Like all other elements, the OTP element
must be unique in the array and could be stored in one

of the first 12th positions in the array. The OTP element
is stored in one of the twelve positions once a month. It
is reasonable to make the position of OTP element
secret between both the sender and receiver, for
example, in the first position in January and in the
second position in February, and so on. However, any
other agreement between the sender and the receiver can
be used to store this element in any position in the array.
Because the agreement is secret between the two ends
of communication (parties), HRO system becomes more
secure. The OTP element is used in building the hash
table in the next section.

2.3 BUILDING THE HASH TABLE
 This table is constructed only once. The function of
the hash table is to retrieve the encoded characters from
it by O(1) time complexity only. This makes the speed
of the encryption process faster than the traditional RSA
and other algorithms. Due to the fact that the size of the
hash table is equal to the load factor multiplied by the
number of the characters, the size of this table is five
times the number of the characters (see figure 2). We
chose the load factor of the hash table in our system to
be 5 in order to reduce the chance of occurring
collisions in the process of building the hash table.
Since HRO system does not send the hash table to the
receiver, there will be no problem if its size is relatively
large. The ideal size of the hash table can be computed
according to the following formula:

 Hash Table Size = Load Factor * no. of Characters

 = 5 * no. of Characters

Figure 2: The general format of the hash table

0 0101010011010110

1 1110010010111011

2 0011001111101111

3 1111101010101000

. .

. .

. .

499 1001111011111001

 The steps of building the hash table is summarized as
follows:
1. For each element in the array created in section 2.1,

excluding the OTP element, the OTP algorithm is
applied to encrypt each character in the text
according to the following formula:

Hash[L] = C ⊕⊕⊕⊕ OTP

Where L represents the location of the encoded
letter in the hash table, C represents the array letter
code, and OTP represents the one-time pad
element.

2. The following hash function is used to find the
locations of the encoded elements produced in step
1 in the hash table (the previous step):

L = D Mod S

Where L represents the location of the encoded
letter in the hash table, D represents the decimal

letter code, and S represents the size of the hash
table. The decimal letter code is computed by

For Storing the Encoded

Characters

ACIT 2007, 26-28 November 2007, Lattakia, Syria 74

converting the 16-bit binary code in the array to the
equivalent decimal code.

3. Should collisions occur due to the hash function
used in step 2, then a separate chaining method is
employed to handle them. In this method each
position in the hash table is an item and a link,
essentially, the head of a list [3]. Obviously, when
the number of permutations that the random
number generator can choose from is large, the
probability of occurring collisions becomes very
high. If, on the other hand, we reduce the number of
permutations, the probability of duplicate elements
produced by the random number generator becomes
high. However, and as previously explained, we
chose the load factor to be 5 in order to reduce the
chance of occurring collisions.

The one-time pad (OTP) algorithm mentioned in step 1
is summarized as follows [11]:
1. Choose a random bit string as the key. In HRO

system, this key is chosen randomly as previously
explained in section 2.2 (building one-time pad
element).

2. Convert the plaintext into a bit string. Here, in HRO
system, the plaintext is already converted into a 16-
bit for each character and is stored in the array
created in section 2.1.

3. Compute the XOR (eXclusive OR) of these two
strings (produced by step 1 and step 2), bit by bit.

2.4 ENCRYPTION OF THE ARRAY
 A new array of all the characters including the OTP
element is now created. Note that the creation of this
array, as in case of the hash table, is performed only
once. But it is possible to re-build it again on a monthly
basis in order to increase the security level by making
the possibility of attacking the array a very difficult
process. In this phase each element in the array
(including the OTP element) is encrypted by RSA
algorithm.
 RSA algorithm is summarized as follows [11, 10]:
1. Choose two large primes, p and q.
2. Compute n = p*q and z = (p-1)*(q-1).
3. Choose a number that is relatively prime to z and

call it d.
4. Find e such that e*d=1 mod z.
5. To encrypt a message (plaintext), P, compute

C = Pe (mod n).
6. To decrypt a message (ciphertext), C, compute

P = Cd (mod n).
Note that in order to perform the encryption, e and n are
needed, while d and n are required to perform the
decryption. Therefore, the public key consists of the
pair (e, n), and the private key consists of (d, n).
 It is obvious that RSA is applied only to the 101
characters stored in the array and not to all the
characters of the message. In the latter case, RSA may
be applied to a single character, A, for example,
hundreds of times, but in HRO system RSA is applied
only one time to each character stored in the array and

not in the message. This speeds up the encryption
process.

2.5 DECRYPTION PROCESS
 Now, the OTP element, the encrypted array, and the
hash table are constructed. The sender sends the
encrypted message and the encrypted array which
includes the OTP element to the receiver. The message
can be a file, an e-mail message or any other piece of
information. As explained above, the sender and the
receiver know the position of the OTP element in the
encrypted array. The sender then performs the following
steps in order to decrypt the ciphertext:
1. Divide the message into 16-bit elements.
2. Apply RSA algorithm to each 16-bit element in the

array including the OTP element.
3. Retrieve the encrypted OTP element from its

position in the encrypted array.
4. Apply the OTP algorithm to each 16-bit element by

using the decrypted OTP element that is produced
in step 2.

5. Match the code to the corresponding character in
the encrypted array for each element produced in
step 4.

Figures 3 and 4, on page 4, illustrate the encryption and
decryption processes in details.

3. EXAMPLE
 Suppose that the sender sends the following
message to the receiver: ABED, then the steps for
encrypting and decrypting this message using HRO
system are:
1. Building the array: suppose the random number

generator generates the array of characters (shown
in figure 5) with the OTP element in the first
position:

Figure 5: The random generated array.

1001000000001011 1101000111010010

Pad A

1001001110011011 0111000111011011

B C

0011101001110011 0111010011111001

D E

2. Building the hash table: The hash table corresponds
to the array generated in step 1 is constructed as
follows:
2.1 Computing the decimal letter code for the
characters: The decimal letter code for the
character A = 53714, for B = 37787, for C =
29147, for D = 14963, and for E = 29945. The
decimal letter code for each character mod 500
represents its location in the hash table. So, the
location of the character A is 53714 mod 500 =
214, the location of character B is 287, the
location of character C is 147, the location of
character D is 463, and the location of character
E is 445.

ACIT 2007, 26-28 November 2007, Lattakia, Syria 75

Figure 3:The Encryption Process

Figure 4:The Decryption Process

 Building Encoded

Array
Random

Number

Generator

Applying Hash Function & OTP

Algorithm

Hash Table (Contains Encrypted

Data)

Retrieve and

Encrypt
Plaintext

(Message)

Ciphertext

Send

Encrypted Using RSA

Algorithm

Encrypted Array

Applying RSA

Algorithm

Encrypted Data

Split Function

Ciphertext

Encoded Array Applying OTP Algorithm
PAD

Decrypted Message
Match

Plaintext

The PAD is secretly
embedded within the array.
Only parties know the

location

ACIT 2007, 26-28 November 2007, Lattakia, Syria 76

2.2 Apply OTP algorithm to the keys of the array,
i.e. each 16-bit character XOR the OTP element.
For character A:

 1101000111010010 ⊕ 1001000000001011 =
 0100000111011001.

See figure 6 for the other characters: B, C, D, and E.

Figure 6: The corresponding hash table

.

.

214 0100000111011001

.

.

147 1110000111010000

.

.

287 0000001110010000

.

.

445 1110010011110010

.

.

463 0101010100111000

.

.

3. Applying RSA algorithm: The array produced in

step 1 is encrypted by the RSA algorithm. p and q
are chosen randomly as prime numbers. Suppose
they are respectively 227 and 317, then n = 71959,
and z = 71416. Suppose d = 47611, then according
to the formula d*e = 1 mod z, e = 3. And according
to the following formula C = Pe (mod n) the OTP
element is encrypted to (0111101111110000).
Character A is encrypted to: (0111101111001010).
Figure 7 shows RSA encryption for the other
letters: B, C, D, E.

Figure 7: The encrypted array by RSA

0111101111110000 0111101111001010

Pad A

0101110011010000 0100100001110001

B C

1100000100011101 0100111010111010

D E

4. The array produced in step 3 along with the

following encrypted message are sent to the
receiver:
01000001110110010000001110010000111001001
11100100101010100111000

5. The encrypted message is divided into 16-bit
elements by the receiver. In our example, dividing
the message gives the following form:
0100000111011001
0000001110010000
1110010011110010
0101010100111000

6. Applying RSA algorithm: RSA algorithm is applied
to the array received in step 4 according to the
previous values of p, d, n, z, d, and the following
formula: P = Cd (mod n). For example the
decryption of the OTP element is
1110100101110100. Figure 8 shows the result of
decrypting the array using RSA algorithm.

Figure 8: The decryption array after applying RSA.

1001000000001011 1101000111010010

Pad A

1001001110011011 0111000111011011

B C

0011101001110011 0111010011111001

D E

7. Applying OTP algorithm: The receiver retrieves the

OTP element from a certain position in the array
according to a predetermined agreement between
the sender and receiver. In our example the OTP
element is stored in the first position of the array
produced in step 6. OTP algorithm is applied to the
encrypted array. For example, the character A is

decrypted by OTP algorithm as follows: ⊕ = ,
and so on. Figure 9 shows the result of decrypting
the array using OTP algorithm.

Figure 9: The decryption of the array after applying OTP.

1001000000001011 0100000111011001

Pad A

0000001110010000 1110000111010000

B C

0101010100111000 1110010011110010

D E

8. Finally, each element in the array produced in step
7 will correspond to one of the encrypted characters
in the message. For example, the first 16-bit in the
encrypted message (0100000111011001), see step
5, is matched with the second position in the array
which represents character A. The second 16-bit in
the encrypted message (0000001110010000), is
matched with the third position in the array which
represents character B. The third 16-bit in the
encrypted message (1110010011110010), is
matched with the sixth position in the array which
represents character E. Finally, the fourth 16-bit in
the encrypted message (0101010100111000), is
matched with the fifth position in the array which
represents character D. So, the decrypted message
is ABED.

4. POSSIBLE ATTACK
 Attackers need to penetrate two levels of security to
break the encryption of HRO system. First, they need to
attack RSA algorithm. This is a complicated process
because the security of the RSA is based on the
difficulty of factoring large numbers. Factoring a 500-
digit number, for example, requires 1025 years using

ACIT 2007, 26-28 November 2007, Lattakia, Syria 77

brute force and 300 years using mathematical equations
and methods [11]. Second, they need to know the
position of the OTP element in the encrypted array,
which is a secret between the sender and the receiver, to
break the encryption. Therefore, they will have to try all
the hundred positions of the array in each of the one
hundred iteration. So the complexity needed is
O(100*100) which is O(10000). As a result, it is very
difficult to break our HRO system because it is a
combination of several levels and subsystems.

5. TIME AND SPACE COMPLEXITY
 Efficiency of any algorithm is measured by its
complexity which means both space and time
consuming. Our concern focus on the worst case.
 Fortunately, HRO system has a fixed space
complexity for the hash table and the array which
allows for both to be placed in the RAM. The hash table
consumes about 500 locations because of the load factor
which is 5 times the number of elements. The array
consumes about 100 locations which has also a fixed
space complexity. According to the rules of
complexity, fixed complexity could be overlooked.
 The time complexity of HRO system includes:

• The time needed to generate the array in the best case
is O(100) if random number generator generates all
the hundred elements without duplications. Should
duplications occur, the time complexity is still fixed
and needs O(100*100) in the worst case.

• The time needed to build the hash table, which is also
fixed, is O(500) in the worst case.

• The time needed to encrypt the array using RSA
algorithm in the worst case is O(n), where n is the
length of the array encrypted. In HRO system the
length of the array is 100 elements. This one is also
fixed.

• The time needed for decryption is based mainly on
the length of the message M. We need to pass on all
the characters in the message. So, in the worst case
we need O(100*n), where n is the length of the
message M.
As a result, the time complexity of HRO system is
O(n), where n is the length of the message M.
However, if the receiver rebuilds the hash table, the
time complexity of decryption is reduced to O(n).

6. PRACTICAL ANALYSIS
 Several experiments are performed on HRO system.
HRO system is tested for building the encoded array
when each element in this array is 8-bits long. In this
case the number of permutations that the random
number generator can choose from is 28. The results
show that the average number of times the random
number generator generates duplicate elements in an
array of size 100 elements is 25.9. The same test is
repeated when each element in the array is 16-bit long.
In this case the results show that the average number of
times the random number generator generates duplicate
elements in the same array becomes 0.15.

 However, HRO system has been also tested for
building a hash table when the size of each element in
the array is 8-bit and again when the size is 16-bit. The
results show that the average number of occurring
collisions when the size of the element is 8-bit is 0 and
when the element size is 16-bit it becomes 12.4.

• HRO system is tested also for calculating the time of
encryption and decryption processes. Figure 10 shows
the results:

Figure 10: Time of Encryption and Decryption

Text Size
(in

characters)

Encryption Time Decryption Time

100 0.06 Milliseconds 0.06 Milliseconds

1000 0.8 Milliseconds 0.8 Milliseconds

10000 50 Seconds 50 Seconds

Average 1304.7 2196.3

 As it is clear from the above table, the average time
in milliseconds for encrypting and decrypting different
sizes of texts is 1304.7and 2196.3 respectively.
However, should the receiver rebuilds the hash table,
then the decryption time is reduced.

7. CONCLUSIONS
 This paper presents an encryption system that is
more efficient than other encryption systems. It has
many properties of RSA, OTP, and the hash-based
algorithms. After analyzing the results of testing HRO
system and running it under various circumstances, the
following conclusions are obtained:

• The hash table expedites the process of retrieving the
encoded characters which simply becomes a matter of
picking a given character from the table since the
location of that character is calculated in advance.
Obviously, this retrieving process is much simpler
and faster than searching all the elements of the array
in time complexity of O(n).

• The time complexity for each encryption process and
decryption process is O(n). This time is very fast
comparing with other algorithms which need to re-
build the array and the hash table every time.

• Using RSA and OTP algorithms in certain phases in
our system makes HRO system more secure and less
vulnerable to attacks.

• Also, storing the OTP element in an unknown
position in the encrypted array makes HRO system
more secure and less likely to be attacked.

• When the number of permutations that the random
number generator can choose from is very large, the
chance of duplication or redundancy of elements
becomes very unlikely. This expedites the process of
building the array.

• But when the number of permutations that the random
number generator can choose from is very large, the
probability of collisions to occur in the hash table
becomes relatively high.

ACIT 2007, 26-28 November 2007, Lattakia, Syria 78

• The practical tests indicate that the random number
generator and the hash function used in HRO system
are very powerful.

• The average time for encrypting and decrypting
different sizes of texts is relative very fast to other
systems. This efficiency comes from applying RSA
only on the characters stored in the array, not on each
character in the message. This indicates that HRO
system is very efficient system.

8. FUTURE WORK
 Since binary representation is used for representing
the characters of the message, then HRO system could
be used to encrypt images as well. This is because a
given image could be represented by a set of pixels with
a set of bits represent the attributes of each pixel.
Moreover, any bitmap images could be directly
encrypted by HRO system with some modifications on
the OTP element which may be a selected image or
shape determined by an agreement between the parties.

REFERENCES
[1] Chang-Doo Lee, Bong-Jun Choi and Kyoo-Seok

Park, “Design and evaluation of a block encryption
algorithm using dynamic-key mechanism”. Future

Generation Computer Systems, Volume: 20, Issue:
2, Pages: 327 – 338, 2004.

[2] Chien-Yuan Chen, Cheng-Yuan Ku b and David
C.Yen, “Cryptanalysis of large RSA exponent by
using the LLL algorithm”, in Proceedings of The

Tenth National Conference on Information Security,
Taiwan, Pages:45-50, 2000.

[3] Horowitz , Ellis /Sahni and Sartaj, Fundamentals of

computer algorithms, Computer Science Press,
1978.

[4] Jun Wei, Xiaofeng Liao, Kwok-wo Wong, and Tao
Xiang, “A new chaotic cryptosystem”, Chaos

Solitons & Fractals 30 (5): 1143-1152 Dec 2006.
[5] Kwok-Wo Wong, “A combined chaotic

cryptographic and hashing scheme”, Physics

Letters A, Volume 307, Number 5, Pages: 292-
298,2003.

[6] Kwok H.S., and Wallace K.S. Tang, “A fast image
encryption system based on chaotic maps with finite
precision representation”, Elsevier, Chaos, Solitons

& Fractals, 2006.
[7] Kwok-Wo Wong, Sun-Wah Ho, and Ching-Ki

Yung, “A chaotic cryptography scheme for
generating short ciphertext”, Physics Letters A,
Volume 310, Number 1, Pages: 67-73, 2003.

[8] Peyravian Mohammad, Roginsky Allen and Zunic
Nev. “Hash-Based Encryption System”. Computers

& Security, Volume 18, Issue 4, Pages: 345-350,
1999.

[9] Rastislav Lukac and Konstantinos N. Plataniotis,
“Bit-level based secret sharing for image
encryption”, Pattern Recognition, Volume 38,
Number 5, Pages: 767-772, May 2005.

[10] Rivest, R., Shamir A., and Adleman L. "A Method
for Obtaining Digital Signatures and Public Key
Cryptosystems", Communications of the ACM,

Volume 21, Number 2, Pages: 120-126, 1978.
[11] Tanenbaum, Andrew S., Computer Networks,

Fourth Edition, Prentice Hall PTR, 2003.
[12] Timothy E. Lindquist, Mohamed Diarra, and Bruce

R. Millard, “A Java cryptography service provider
implementing one-time pad”, in

Proceedings of the 37th Annual International

Conference on System Sciences, Hawaii, USA
ACM, IEEE Computer Society, 2004.

ACIT 2007, 26-28 November 2007, Lattakia, Syria 79

