
The 2006 International Arab Conference on Information Technology (ACIT'2006)

 1

A GENERIC SMA FOR MULTI CRITERIA OPTIMIZED ALLOCATION

OF APPLICATIONS ON HETEROGENEOUS ARCHITECTURES

 Saouli Rachida* , Akil Mohamed** ,and Henni Abderrazak ***

* Computer science department, BP 145, Mohamed Khider University, Algeria.

Email: saoulir@esiee.fr

** ESIEE, BP 99 2 BD Blaise Pascal, F 93162 Noisy le Grand cedex, France

akilm@esiee.fr

*** INI, Oued Smar, Alger 16000, Alegria

henni@ini.dz

Abstract
We are interested in this work, by the optimized static

allocation multi criteria in a real time distributed

system when the tasks are subject to precedence’s

constraints. Within this framework it is necessary to

suppose before execution, that all the possible scenarios

of executions satisfy the temporal constraints while

minimizing the cost and the size of material

architecture, as well as the use at best of its resources.

In this problem of resource allocation (placement and

scheduling), which is NP-Complete, the satisfaction of

several criteria can be contradictory. For the resolution

of this problem, we propose in this work, a generic

multi agent system, which is a dynamic component,

coupled with a static strategy of scheduling in order to

particularly integrating the criterion of load balancing.

Thus, the need for a dynamic model appeared to us with

the consideration of the heuristic based on list

scheduling [1], [12]. An experimental Analysis was

realized under programming parallel environment PVM

(Parallel Virtual Machine)}, and shows the interest of

our method. This for any heuristics using the dates of

execution of the tasks (operations) in particular for

method AAA (Algorithm, Architecture, Adequacy)

developed with the INRIA and which was the subject of

several extensions.

Keywords: static placement/scheduling, load balancing,

system distributed real time, multi agent systems

1. Introduction
The real time systems are founding in fields such as

aeronautics, control of industrial processes or

telemedicine also embarked systems are in systems of

brakes control and engines. These critical systems,

whose majority consists of treatments, must

imperatively respect all their temporal constraints. A

way to satisfy these real time constraints lies in the use

of parallel machines multiprocessors, which are

possibly heterogeneous. In the study of the real time

distributed systems the problems of placement and

scheduling are simultaneously encountered and if the

model of the graph's algorithm is guided by precedence,

it is the total execution time of the system which is

considered not only or without [12] load balancing.

Thus within this framework we consider the list

scheduling algorithms where, in each stage, a choice is

made for the most advantageous placement (faster and

satisfying a criterion) and for a given operation [9]. This

adapts perfectly to the systems subjected to temporal

constraints. They make it possible to select one

processor, for an operation given by primarily using two

functions. They correspond to the start and the end dates

of the operation on the operator, and load balancing is

performing progressively. Then the algorithm maintains

up to date two lists: one containing the ready tasks and

the other unoccupied processors. It chooses a new task

to assign with the free processor (minimal utilization

ratio) for which imbalance after placement is minimal.

The choice of the task to be scheduled is more difficult.

It defines a priority between the tasks available to a

given moment. This priority is a function of the

temporal characteristics of the tasks or/and structural of

the tasks graph and so that the expiries are respected.

The selection criterion of a task, takes into account in

this case the urgency of the task. In [13], the attribution

of a priority is according to the task’s duration time and

the maximum of its successors duration time, but this

method gives satisfactory results when the

communications are null. Extensions to this work [14]

duplicate tasks, what increase the processors use ratio.
Other work based on a dating of the events; the rule

giving the priority can take into account the duration of

the task [10] or its date of activation at the latest,

without considering the constraints neither of

precedence nor over resources. In [9] according to the

date of reception of the messages, the earliest ready task

on a given processor, is selected what reduces the

choice of the processors and makes difficult the load

balancing. In addition, the selection criteria of a task

can been restricted by constraints of placement, which

limits the selection of a task. These constraints can be

related to the heterogeneous operators [3] intended

execute different operations (tasks) who’s urgency to be

scheduled, follows a function cost called pressure of

scheduling. This function corresponds to a difference

between the values of penalty and flexibility but without

to consider the balancing of load. In [6] the constraints

of placement relate to the mechanisms of faults

tolerance. Two criteria are taking into account, and are

varying dynamically with an order of evaluation, at

each request for reconfiguration. Moreover, the

heuristics based on these criteria gives a low having

imbalance only, for configurations of the too strong

constraints, related to the bonds available enter the

nodes.

The 2006 International Arab Conference on Information Technology (ACIT'2006)

 2

Then we consider that in the problem of resources

allocation, the application of several criteria was not

solve in the literature by traditional linear methods. To

solve this problem we propose in this work a new

methodology, based agent whose model is present in

section 2. In section 3, we consider our model coupled

particularly with heuristic developed at INRIA [12], [3],

in order to integrate initially the load-balancing criterion

not considered yet. In the section 4, we present the

environment of simulation under PVM as well as the

results obtained.

2. Multi agent system multi criteria (SMA-

MC)
The methodology used, is basing on the concept of

agent. Among the definitions for the concept of agent,

we use the one that defines the agent as an autonomous

entity, real or abstracted. It is able to act on itself and its

environment. In a multi agent universe, it can

communicate with other agents. The behavior is the

consequence of its observations, its knowledge and

interactions with other agents [4].

2.1. Conceptual structures of agents

An agent is located in an environment. To model the

structure of the agent, it is necessary to have a model of

this environment. The latter can be in a state among a

whole of states. It can change its state either in a

spontaneous way or like result of the actions of the

agent. The evolution of the environment is modeling

differently, according to its characteristics, which one

takes into account, and simplifications that one is

authorized [5].

The characteristics of the environment influence the

way in which one designs an agent because it is

necessary to take account the environment’s evolution,

and the capacity of the agent to seize this evolution.

2.2 The general model of the SMA

The system proposed is based on:

• A Meta agent: from one placement/scheduling

heuristic Hi, characterized by use of specifications

models of tasks algorithm to allocate, and

architecture target of processors, the meta agent

create (instancing) agents of system. It constitutes

accountancies of each agent (sure knowledge that

an agent has on the other agents of its

environment). It establishes the model (ENV) of its

environment, which corresponds to allocation

model. It defines the whole of objectives to reach,

as well as the set of the strategies using

communication actions. We define the knowledge

of the Meta agent as being the whole of the Meta

rules, which make it possible to adapt heuristics of

placement/scheduling to its SMA.

• A generated SMA: where each agent corresponds

to a processor composing the model of distributed

architecture used in the considered heuristics. This

fact by using the base of knowledge BC, the Meta

agent generates the system of cognitive agents [8],

which act in the same definite environment. Each

agent will perceive the environment like dynamics

and nondeterministic. The environment state can

change after actions of other agents or of

environment, and the same action in a certain state

will have different results according to the actions

from the other agents.

Detailed description of the agent

To determine the agent’s actions of this system, it is

necessary to define them like their interactions [2], with

environment and agents. The definition of an agent

bases: on the one hand of a universal definition of

cognitive agents, and on the other hand of a detailed

definition corresponding to the logical model. This

latter, bases on architecture BDI (Believe, Desire, and

Intention) [8], and presented in the Figure1.

Figure 1
 ENV

PERC

EXEC

CM

F

M

agent agent

BA

A

Figure1. The logical agent’s model

In Figure1, we represent the environment ENV by a

plan surrounding the agents that are located there. Each

function of the agent is representing by a rectangle

surrounding its name. The set of knowledge of the agent

(strategies: knowledge and objectives that are Desires

and Intentions) corresponds to knowledge base BA. The

result of functions modeling an agent is representing by

an oval. In addition, double direction arrow represents

interaction enters agents and the environment.

The functions of the agent’s model locat in its

environment are defining below:

• PERC: ENV → F is the function, which perceives

the model of the environment ENV, and establishes

the facts F, which are the beliefs of the agent.

• EXEC: S x F x B → M is the kernel function, which

allows the achievement of the objectives B and

established the change(s) M on the environment.

This is according to strategies S available to the

agent, to established facts F.

• CM: M x C → ENV is the function, which makes it

possible the communication of the change (actions)

on the environment according to the established

accointances.

 Strategies of each agent are the set of rules, which,

allow to make a change on the environment, and to

perform interactions (SI) with the agents of its

The 2006 International Arab Conference on Information Technology (ACIT'2006)

 3

accountancies. An interaction allows generating a new

model of the state of the environment (S1), sending

tasks since and from other agents (S2), sending

messages of information or a new decision (S3), and

modification on the model of environment (S4).

Interaction between the agents of this model is

realizing according to their accountancies. The agents

concerned with this interaction are those, which satisfy

the same constraints on the placement/scheduling, or

bound by a neigh board's relation. This interaction is

performing with the use of a master agent, which is

supervising execution of the slave agents’ functions.

The master maintains, for a certain time the objectives

until their achievements (limited obligation) by slave

agents of the system. The result of the perception of

environment implies the possibility that the selected

objective can be still realizable, or possibly changes by

another according to the result of actions performed on

the environment. In this case, the takeover by a master

agent implies master slave relations with the agents of

the system, by guiding their actions and their wait, as

well as the resolution of possible conflict generated by

the mechanisms of decisions of each agent slave.

3. The criterion of load balancing and the

methodology AAA
Within the framework of real time distributed

applications, the methodology AAA (Algorithm,

Architecture, Adequacy) developed with the INRIA

heuristic (HA) [3] takes into account all the steps of the

development of an application, of its high level

specification until the execution of the code in the

components. An optimized allocation is obtaining by

transformation of graphs. It corresponds to one static

placement/scheduling of elements of the algorithm on

target distributed and heterogeneous architecture. The

latter is modeled by a directed graph constituting a

network of automates. The set of the nodes of a graph,

defining in this case a processor, is of four types:

operator, transfer, memories and bus. The required

solution bases on the latency, which is in direct

relationship to minimization of the communication’s

cost and corresponds in this case to the length of the

critical path of the allocation graph. This methodology

bases on a preliminary characterization of the elements

of the graph of algorithm and architecture (maximum

execution times of the operations on each operator able

to execute it …). It makes it possible to predict the

behavior of the application and to build its executive

distributed and optimized. Nevertheless, the predictions

off lines, in particular the duration time of the

operations on the operators of architecture, can be

deviated of the real values at the execution time. Indeed

these durations, which are at worst case, do not adapt to

the data (changes) of execution what can land the

system in degradation: an important imbalance in the

use of the resources, a not respected latency implying a

static adaptation and new execution of the allocation.

The definition of the objective (criterion) of load
balancing is relating to the improvement of the

establishment in heuristics HA considered. The latter

bases on a cost function, which evaluates the urgency to

schedule an operation so that the higher it is for an

operator, more the value of corresponding flexibility is

small and more the critical path is lengthened (penalty).

It is thus a question of scheduling each operation

candidate on each operator able to execute it, and retain

the operator minimizing the function cost used. Our

system makes it possible to integrate the objective

defined according to Figure2.

Figure 2

Multi criteria heuristics

Heuristics of

optimization SMA-MC

Graph of

allocation

Automatic generation of
optimized real time

executive

 Model of algorithm
 Model of architecture

 Specification of constraints

 Specification of objectives(criteria)

Figure2. Mixed system of optimized allocation

The SMA-MC generates the corresponding SMA and

the Meta Agent establishes:

• the slave agents sl and the main agent,

• the accountancies of each agent while basing on

the constraints of placements,

• the model of the environment state ENV that

corresponds to the diagram of the allocation

sequence,

• the objectives considered (load balancing), and the

strategies (sets of rules or methods) for there

realization.

Duration times used: In our method, the strategies of

the agent base on a principal characteristic, which

relates to the rule of use exact durations of operations

on the operators, and not an approximation with the

average duration as it is the case in heuristics HA

considered. Indeed let us recall that in the static

allocation, if the exact durations can be possibly

deviated of the real values at the execution time, the

approximate values will only increase these deviations.

These execution times correspond to an approximate

time calculated for each Oi operation, by an average

compared to the number n of Opj operators able to

execute it according to the expression:

∆app (Oi) = 1/n ∑ ∆(Oi , Opj) such as

∆(Oi,Opj) is the exact duration characterized in HA.

In addition, the earliest end date E(Oi) of an operation

Oi corresponds:

The 2006 International Arab Conference on Information Technology (ACIT'2006)

 4

E(Oi) = S(Oi) + ∆app(Oi) such as S(Oi) is the earliest

start date which is the greatest date E of its

predecessors.

From these dates, the critical path R of the graph of

algorithm is the duration of the longest path:

 R=Max [E(Oi)].

Consequence of the use of exact durations in our

method, is that we characterize each operation Oi by a

start date S (Oi,Opj) on each operator Opj.

Principle: the approach proposed aims to balance the

loads of the operators to each stage of the heuristics of

scheduling. For this, we based on the principle of the

dynamic method of balancing SID (Sender Initiative

diffusion). However, we have modifying the quantity

(=1) of operations to be negotiated for a new

scheduling. We have regarding the field of scheduling

as being constraints of placement. Finally, we have

adding the execution kernel EXEC, to take into account

the precedence of the operations. It is thus a question of

negotiating the migration of only one operation among

those allocated with an agent overloaded according to

the following mechanism:

- Perceive scheduling information.

- Each agent estimates its local load: an overloaded

agent disseminates information of balancing to the

agents of its. Accepted operation generates a

minimal scheduling path, which does not lengthen

the critical path with this stage.

- Resolves conflict and decision of the scheduling of

the selected operations.

The result of the perception PERC (ENV) of the

environment makes it possible to establish facts for each

agent slave: his local load, the length of local

scheduling, as well as the average load in a number of

allocated operations defined by:

∑load (sl) / n where n is the number of agents slaves

sl pertaining to the accountancies.

The set of the rules of agents’ strategies is applying

by kernel function EXEC defined below by the

functions EXEC1 and EXEC2 of each agent and makes

it possible to evaluate its load LU compared to a value

(threshold) preset by using the average of the loads:

Any overloaded agent communicates to its group, the

preceding operation maximum earliest end date Emax.

This date corresponds to each operation allocated to

him (according EXEC1).

Any discharged agent tests the operation, which does

not lengthen critical path Rn with this stage, based in

the exact duration time and the local scheduling path

Rlocal (according EXEC2).

Using information received from each agent slave, the

master agent applies the actions of change SI of

environment. Therefore, for any operation concerned

with the action of (new) allocation, a slave will be select

after resolution of conflict. The decision of the master is

according to whether this operation generates a new

minimal local way Rnouv on a slave.

The resolution of conflict relates to the case where a

several slave agents select the same operation and in

this case, the chosen operation is that which checks:

Min (Rn - Rnouv) such as Rn is the path obtained from

stage n of the heuristics.

Function 1: EXEC1 (F, B, S)

REQUIRE: LPRED {lists of operations scheduled with

its preceding ones}

REQUIRE: Q {list of the operations scheduled on the

agent overloaded}

REQUIRE: LCRIT {list of operation in critical path}

ENSURE : Emax

ENSURE: M {actions of communication}

If (LU –Moyload) > threshold then

 For all O such that operator (O) = sl do

 Emax = maximum (LPRED)

 {The maximum earliest end date

 of the precedents operations}

 End For

M = (S3, Emax (Q)) {return the list of Emax of each

operation locally scheduled}

End If

If Oi in LCRIT then

Emax = maximum (LPRED (Oi))

{Operation Oi scheduled with this stage}

M = (S3, Emax (Oi))

{Return Emax of the precedent of Oi}

End If

Function 2 EXEC2 (F,B,S)

REQUIRE: Q {list of the operations scheduled on the

agent overloaded}

REQUIRE: Emax

REQUIRE: ∆ (O, sl) {exact duration time of each

operation O scheduled on agent sl}

ENSURE: M {actions of communications}

If (LU –Moyload) < 0 then

 For all O in Q do

 If (Emax (O) < Rlocal)

 and (Rlocal + ∆ (O, sl)) < Rn then

 Rnouv = Rlocal + ∆ (O, sl)

 min (O) = MINIMUM (Rnouv) {retain

 the operation which does not lengthen the

 critical path}

 End If

 If (Emax (O) > Rlocal) and (Emax (O) +

 ∆ (O, sl) < Rn) then

 Rnouv = Emax (O) + ∆ (O, sl)

 min (O) = MINIMUM (Rnouv)

 End if

 End for

 M = (S3, min (O)) {communications’

 Actions of the local path min generated}

End if

The 2006 International Arab Conference on Information Technology (ACIT'2006)

 5

4. Experimental Analysis under PVM
PVM (Parallel Virtual Machine) is a communication

system, made up of a library and a demon. It makes the

communications independent of the operating system,

where applications use whole machines, potentially

heterogeneous and inter-connected by a communication

network, like only one computer. Execution

applications on pvm distribute tasks on one or more

computers constituting the parallel machine. Each task

of the virtual machine can emit an unspecified number

of messages toward any other task of the machine.

Thus, pvm library consists of two principal parts. The

first one, which is independent of the operating system,

gathers all the functions of management of the tasks

pvm and of the groups as well as the high-level

communication functions. The second, moreover low

level, includes the transfer's functions of the packages

on the network, recognizes the system of the host

machine, and adapts to his architecture. XPVM is the

X-Windows version of pvm; it is a representation of

machine PVM with the name(s) and type(s) of

computer(s) composing it. This menu of window make

it possible to control the tasks (menu Tasks), to control

the machines (menu Hosts), to stop pvm (menu Reset,

Quit, Halt) like having of the assistance (menu Help).

We have realized our simulation by using xpvm under a

host Linux: the principal task (level n0) is the task xpvm,

which enabled us to activate the execution of the

system’s agents. In level n1, a group of tasks, main

agent (T_M) and k agents slaves (T_sl), are creating and

synchronizing with mechanism of barrier. This later

makes it possible to block all the agents on this level,

until the specified number of agents in simulation was

been activated, while arriving at the same point of

equivalence. In addition, it allows a dynamically

manage of addition other members (agents) to the

group. The spawn associates in this level an identifier

(TID) with each task created (T_M, T_SL) and which

will make it possible pvm to recognize it in the virtual

machine. In addition, we used an index me of

membership of the group to identify each task agent

member, value 0 allows to initially launching the

execution of the main agent (T_M) of our system. The

execution scheme (level n2) realized in our method is

presented in Figure3.

pvm_send() : data from overloaded T_SL

Level 2

Establish perception of facts

pvm_mytid() : Identification in pvm

Processing time of primitive

pvm_send() : data distribution

Starting of T_M

pvm_recvt() : not blocking waiting

Determining overloaded T_SL

pvm_send() : send data for

 discharged T_SL

pvm_recv()

Determining the T_SL response

Resolution of conflict (even

Operation is accept by several T_SL)

Starting of T_SL

pvm_mytid()

pvm_parent() : obtain master TID

pvm_recv() : blocking waiting

Verification of load

pvm_recv() : blocking waiting of

 discharged T_SL

Determining accepted operation

pvm_send()

Figure3. Model of the agents’ execution

The 2006 International Arab Conference on Information Technology (ACIT'2006)

 6

Restrictions were been made because of indeterminism

in the creation of the tasks pvm. Then we have limited

our tests to a scenario of extreme imbalance where all

operations are been scheduled on only one slave agent.

This is why a reduced number (2) of slave agents, was

considered. Simulation uses a file test of entries using

allocations graphs examples, generated by the heuristics

considered. This determines the perception function,

realized in this diagram by the main agent. The files

tests are been structured in tables, which characterize

for each operation, the date’s values below:

- Earliest start date S of scheduled operation on

allocated agent

- Precedents operations of scheduled operations,

- Exact duration of operations on agents

- Average duration time in the group

The result of simulation relates to the determination of

the operation and the new operator (agent slave) of

scheduling in a stage of the heuristic. Indeed, in our

case, we use the exact duration over the slave and not

the average duration as in heuristic HA, to test the

acceptance of an operation by, a slave. Let us recall that

they are here operators modeled by agents. An agent is

overload according to following rules:

- R1: If (local load - average load in the group)>

threshold (=1) then process corresponding to the

imbalance generated by HA in the allocation.

- R2: If (an operation belonging to the critical path

was scheduled with this stage)} then process

corresponding to temporal imbalance because of

use of average duration in HA.

Process is the consequence of application of the rules

R1 or R2, which allows the agent discharged to

determine the operation of which it can be its new agent

(operator) of scheduling.

Application of rule R2: That is to say, the sequence of

scheduling Figure 4(a) generated by heuristics HA such

as operations Oi: (A, B, C, D) scheduled on two

operators Op1 and Op2 and characterized by:

• Diagram of precedence: PRED(B)=PRED(C)=A

and PRED(D)=C,B

• Average durations times:

 ∆app(A) = ∆app(C)= ∆app (D)= 1

 ∆app (B)= 4

Evaluation of balancing by our system: We have

established the values of duration time below, to obtain

the same duration time’s average ∆app:

 ∆A ∆B ∆C ∆D SA SB SC SD

sl1 1 5 1 1 0 1 1 6

sl2 1 3 1 1 0 1 1 4

0 1 2 5 6

 Rn R

(a)

0 1 2 4 5

 Rn R

(b)

C

A B D

S(Oi,Opj)

Opj

 Op1

 Op2

C A

B

D

S(Oi,slj)

slj

 sl2

 sl1

Figure4. Diagram temporal before (a) and after load

balancing (b)

Our method relates to the stage of scheduling operation

B that belongs to the critical path and its flexibility is

null. Thus, what determined its urgency to be scheduled

by HA. After it’s scheduling and with this stage, in our

method it is the slave agent sl2, which will be concerned

and applied the rule R2 by using the exact durations

such as:

Min (∆(B, sl1), ∆(B, sl2))=3 and Emaxpred >

Rlocalsl2= (1 > 0)

What implies Rn - (Emaxpred + 3) > 0: the critical path

Rn corresponding to this stage, does not increase. This

agent (sl2) will accept operation B. Here Emaxpred is

the end date of the operation A which is the preceding

operation of B. Recall that these values (Emax) are

calculated and transmitted in our method, by the agent

overloads and used by the slave discharges to test if the

operation can be scheduled in it.

Figure 4(b) presents the result of the primitive

pvm_send () generated by the agent sl2. It shows the

consequence of this result on the following stages of

scheduling of operations C and D.

Application of the rule R1: We illustrate in this

example, the application of the rule R1 by our method.

It is about the stage after scheduling of three no critical

operations Oi:(A,B,C) characterized by:

- Diagram of precedence given by:

 PRED (B) = A, PRED (C) =B

- Values of duration times ∆ and Starting date S:

 ∆A ∆B ∆C SA SB SC

sl1 1 4 1 0 1 5

sl2 1 4 1 0 1 5

 Op2

Op1

slj

0 1 5 6
 Rn

(a)

0 1 5 6

 Rn

(b)

S(Oi,slj)

A B C

S(Oi,Opj)

C

A

 sl2

 sl1

Opj

B

Figure5. Diagram temporal before (a) and after load

balancing (b)

The 2006 International Arab Conference on Information Technology (ACIT'2006)

 7

Figure5 (a) presents the temporal diagram of the

sequence of scheduling obtained by heuristics H. Figure

5(b) presents the result of our method after the

application of the rule R1 for this stage. It is thus the

agent sl1, which is overload such as:

(LUsl1 – average load) = 3 – (3/2) > 1. Operation A is

that accepted by the agent sl2, for it generates a local

path minimal (Rlocal) on this agent.

Thus let us note that the improvement of the heuristics,

by the integration of the criterion of load balancing

allows a better use of operators and/or a profit in the

length of scheduling sequence, if the operation

concerned with balancing is characterized by a smaller

exact duration. Possibly if the rules R1 and R2 are not

applied, a decision can related to the reduction of the

size of architecture according to operators' which are

allocated with no operation.

5. Conclusion
We considered in this work that the problem of the

integration of several criteria, to each stage of the

placement/scheduling heuristics, is presented in the

form of an open system (parallel, asynchronous,

indeterminism). We propose in this work a mixed

system. The latter ‘cohabits’ a dynamic model based

cooperative agent with a static model of allocation.

Initially, the criterion of load balancing was introducing

with taking into account, precedence over operations.

These latter are connecting to real time distributed

systems that base on the assumption of synchronism

extremely related to the logical succession of events and

decisions. The system that we propose is generic which,

through the Meta agent will try to learn in the past and

to found, which and if a criterion is to performing at

each stage of the heuristic. These remain then to solve

the problem of the adaptation of the multi agent system

for heuristics HA, or others in order to introduce well

other criteria not taken into account such as the degree

of freedom [7], the fault-tolerance.

REFERENCES

[1] Bertrand Braschi. Principle of list scheduling

algorithms with tasks assignment priorities. Doctorate

Thesis. University of Grenoble. Nov 90.

 [2] Chaïbdraa B. Interaction between agents in

routines, familiar and unfamiliar situations.

International Journal of cooperative Information

systems (5): 1-25. 1996.

[3] Thierry Grand Pierre. Modeling of heterogeneous

parallel architectures for automatic generating an

optimized real time distributed executives. PHD Thesis.

Paris XI Orsay University. Nov 2000.

[4] Jacques Ferber. Multi agent systems towards a

collective intelligence. Inter Editions. 1995.

 [5] Florea Adina, Daniel Kayser and Stefan Pentiuc.

Agents Intelligents. Web course. Polytechnic

University of Bucharest. 2002.

 [6] Lanet.J. Tasks allocation in a distributed system.

RTS 95, pp 222-231, Paris, Jan 95.

[7] LU and Carey. Load balanced allocation in locally

distributed computer systems. Computer Science

Technical Report 633. University of Wisconsin. Feb

1986.

[8] Jean Pierre Müller. Organizational Modeling multi

agent systems. S.E of ARCo. jui2000.

[9] Shepard Gagné. A Pre Run Time Scheduling

algorithm for hard real time systems. IEEE transactions

on software. Vol 17. n7, pp 669-677. Jui 1991.

[10] Shirazi, Wang. Analysis and evaluation of heuristic

method for static task sheduling. Journal of Parallel and

Distributed Computing. N.10. pp 222-232. 1990.

[11] Munteau Traian, Talbi El Ghazali. Method of static

processes placement on parallel architectures. TSI V.10.

n5, 1991.

[12] Vicard.A. Formalization and optimization of

distributed real time embarked systems. PHD Thesis.

University of Paris-XIII, Galileo institute, JUI.1999.

[13] Wu and Sweeting. Heuristic Algorithms for task

Assignement and Scheduling in Processor Network.

Parallel Computing, n20, pp1-14. 1993.

[14] Yang and Gerasoilis. List Scheduling With and

Without Communication Delays. Parallel Computing.

n19, pp 1321-1344. 1993.

