
The 2006 International Arab Conference on Information Technology (ACIT'2006)

XML DATA INTEGRATION SYSTEM

Abdelsalam Almarimi

The Higher Institute of Electronics Engineering
Baniwalid, Libya

Belgasem_2000@Yahoo.com

ABSRACT

This paper describes a proposal for a system for XML

data Integration and Querying via Mediation (XIQM).

An XML mediation layer is introduced as a main

component of XIQM. It is used as a tool for querying

heterogeneous XML data sources associated with XML

schemas of diverse formats. Such a tool manages two

important tasks: mappings among XML schemas and

XML data querying. The former is performed through a

semi-automatic process that generates local and global

paths. An XML Query Translator for the latter task is

developed to translate a global user query into local

queries using the mappings that are defined in an XML

document.

KEYWORDS: Data integration, mediation, XML
Schema, XML Query languages.

1. INTRODUCTION
XML [10] has become the standard format to exchange
information over the internet. The advantages of XML
as an exchange model, such as rich expressiveness,
clear notation, and extensibility, make it the best
candidate for supporting the integrated data model.
Tools and infrastructures for data integration are
required due to the increasing number of distributed
heterogeneous data sources on-line. However, modern
business often needs to combine heterogeneous data
from different data sources. Therefore, tools are needed
to mediate between user queries and heterogeneous data
sources to translate such queries into local queries.
 As the importance of XML has increased, a series
of standards has grown up around it, many of which
were defined by the World Wide Web Consortium
(W3C). For example, XML Schema language [11]
provides a notation for defining new types of XML
elements and XML documents.
 Our system prototype called XIQM (XML data
Integration and Querying via Mediation) has been built
to perform the mappings among XML schemas,
producing a mediation layer, which is then used to
generate local queries. The mediation layer is proposed
as a main component to describe the mappings between
global XML schema and local heterogeneous XML
schemas. It produces a uniform interface over the local

XML data sources and provides the required
functionality to query these sources in a uniform way. It
involves two important units: the XML Metadata
Document (XMD) and the Query Translator. The XMD
is an XML document containing metadata, in which the
mappings between global and local schemas are
defined. In general, the major difficulty of connecting
the global XML schema and the local XML schemas
comes from the large number of data sources.
Therefore, it is absolutely necessary to generate
mappings automatically. The designer interaction is
necessary; two terms may refer to different concepts
and may not have the same meaning. Only a human at
the present time is able to guarantee the semantic
consistency of such a mapping. Thus, we implement a
simple form (GUI) as an assistant tool for mapping
generation.
 In the paper [1], only one unit of our system was
introduced. We described the process of the XMD
generation in which a semi-automatic process for
integrating XML schemas is implemented using GUI.
Such a process takes a set of local XML schemas and
generates an XML Metadata Document that can be used
for query purposes. In this paper, we introduce the
whole system including a new method for XML query
translation which is the integral part of the system.
Currently, we use Quilt [3] as XML query language, but
we can move to XQuery language without problems.
The rest of the paper is organized as follows. Section

2 introduces the related work. In section 3, we present
an overview of the system architecture. Section 4
describes the schema integration process. Section 5
shows the XML Metadata Document generation.
Section 6 describes the query translator unit. Examples
of query translation are introduced in Section 7. Finally,
we conclude the paper and point out the future work.

2. RELATED WORK
Data integration has received significant attention since
the early days of databases. In the recent years, there
have been several works focusing on heterogeneous
information integration. Most of them are based on
common mediator architecture [9]. In this architecture,
mediators provide a uniform user interface to views of
heterogeneous data sources. They resolve queries over
global concepts into sub-queries over data sources.

The 2006 International Arab Conference on Information Technology (ACIT'2006)

Figure 1: The system architecture.

Mainly, they can be classified into structural approaches
and semantic approaches. In structural approaches, local
data sources are assumed as crucial. The integration is
done by providing or automatically generating a global
unified schema that characterizes the underlying data
sources. On the other hand, in semantic approaches,
integration is obtained by sharing a common ontology
among the data sources. According to the mapping
direction, the approaches are classified into two
categories: global-as-view and local-as-view [5]. In
global-as-view approaches, each item in the global
schema is defined as a view over the source schemas. In
local-as-view approaches, each item in each source
schema is defined as a view over the global schema.
The local-as-view approach better supports a dynamic
environment, where data sources can be added to the
integration system without the need to restructure the
global schema.
 Well-known research projects such as Garlic [4],
Tsimmis [8], MedMaker [7], and Mix [2] are structural
approaches. A common data model is used, e.g., OEM
(Object Exchange Model) in Tsimmis and MedMaker.
Mix uses XML as the data model; an XML query
language XMAS was developed and used as the view
definition language there. DDXMI [6] (for Distributed
Database XML Metadata Interface) builds on XML
Metadata Interchange. DDXMI is a master file
including database information, XML path information
(a path for each node starting from the root), and
semantic information about XML elements and
attributes. A system prototype has been built that
generates a tool to do the metadata integration,

producing a master DDXMI file, which is then used to
generate queries to local databases from master queries.
In this approach local sources were designed according
to DTD definitions. Therefore, the integration process
is started from the DTD parsing that is associated to
each source.
 Many efforts are being made to develop semantic
approaches, based on RDF (Resource Description
Framework) and Knowledge-based Integration [5].
We classify our system as a structural approach and

differ from the others by following both the local-as-
view and the global-as-view approaches. In addition to
this, the XML Schema language is adopted in our work
instead of DTD grammar language, which has limited
applicability.

3. SYSTEM ARCHITECTURE
The entire architecture of XIQM is presented above in
Figure 1. The data sources that we are interested in are
XML documents satisfying different XML schemas.
The XML Schema language is adopted in our work
instead of DTD (Document Type Definition) grammar
language, which has limited applicability. The main
component of the system is the mediation layer, which
comprises the XML Metadata Document (XMD) and
the Query Translator. The XMD is an XML document
containing metadata, in which the mappings between
global and local schemas are defined. A GUI assistant
tool is also involved, which is a simple form used to
simplify the mapping process among schemas and to
reduce the designer effort.

The 2006 International Arab Conference on Information Technology (ACIT'2006)

The function of the query translator is rewriting a

parsed global query into a local query for each local
source. The main idea is that when a global query over
the global XML schema is posed, it is automatically
translated by the Query Translator unit into sub-
queries, called local queries, which fit each local
database format using the information stored in XMD.

4. AN APPLICATION EXAMPLE
To clarify our approach, we introduce an example in
which three publishers' database sites are used. Our
objective is to create a global view over these
heterogeneous sites to be used for query purposes. The
publishers are Addison Wesley (AW), Prentice Hall

(PH), and Wiley (Wiley). The structure of each site was
studied carefully and their XML schemas were defined.
Although AW, PH, and Wiley all contain book
information, the data structures are different. Let us
assume that the author information of the global
schema is divided into first name and last name, while
in the local sources it is represented as full name. Also
the price unit of the local sources is the dollar, while
the global schema uses the euro. In addition, the book
format of AW is represented as a single element, while
in PH is divided into two elements: CoverType and
Pages. We present in Figure 2 a part of the tree
structures of the schemas that are used in the example.

Figure 2: A Part of the tree structure for XSDs.

5. XML SCHEMA PROCESSING
The XML schema is itself an XML document, which
we denote as XSD (XML schema definition). It is a
sequence of components where each component is an
attribute, or an element or a simple type or complex
type. The JDOM API is used for reading XML schema
documents in memory. In fact, JDOM itself does not
include a parser. Instead it depends on a SAX parser

[12], which can be used to parse documents and build
JDOM models from them.

5.1 XSD MODELING
We model XSD as a tree structure whose nodes are
components of the corresponding local sources.

Figure 3: CHILD function table for source AW.

The 2006 International Arab Conference on Information Technology (ACIT'2006)

 Each component corresponds to the occurrence of a
tag, to the occurrence of an attribute, to the content of
tag, and so on. We formulate an XSD Model
(XModel), where an XSD can be described. We
consider a set of nodes N that can be represented as: E
for element names, A for attribute names, and T for
type names. Here, we do not aim at complete
formalization of all details of XML Schema, but rather
capturing its essential modeling features which meet the
basic requirements of our approach. Hence, we consider
the below functions as basic requirements in which an
XSD can be characterized:

Root: ΦΦΦΦ → N returns the unique root node of the
document,
Children: N → [N] returns the ordered list of children
of a node, or the empty list [] in the case of a leaf node,
Attr: N → A returns an attribute name,
Tag: N → E returns the unique tag (e.g. element name)
of a node,
Type: N → T returns a type name of a node.

Definition 5.1.1 (Names)
An XModel schema is a tree that holds a set of nodes N
which can be disjoint sets T, E, and A of type names,
element names, and attribute names, respectively.

Definition 5.1.2 (Types)
Given an XModel for an XML schema definition, then

each type t ∈ T in the schema is either a simple type Ts,

or a complex type Tc, where T = Ts ∪ Tc.

5.2 EXTRACING XSD COMPONETS
To generate a unique path for each element or attribute
of the schemas, we need to search the XModel structure
and extract out the components that we are interested
in. Mainly, only the values of the elements and
attributes are requested. In other words, we omit the
names of components which contain a complex type.
Therefore, we assume that ELEMENTS and
ATTRIBUTES are a set of elements and attributes,
respectively, of the XModel. Formally, we introduce a
function:

CHILD:COMPONENT→℘
(COMPONENT),

COMPONENT= ELEMENTS ∪ATTRIBUTE

which assigns a multi set of child components to each
component in an XSD1. Basically, the CHILD function
is founded to materialize the XSD components that are
needed. The process of extracting XSD components
comprises the following steps:
1. After a XModel tree is formed for each XSD.
2. For each XSD object, the value of each
components name (exclude the name and type) is

1 In our implementation CHILD is realized by a JAVA 2 hash
table assigning to a parent as key and its children as values.

extracted and a new tree data structure x is
constructed.

3. A unique number is given to each node of x to
resolve naming conflicts.

4. A depth-first traversal is performed on x; and the
CHILD function is materialized. Figure 3 shows
the generated CHILD function (represented by a
table) for AW source. It is obvious that, e.g. for
node AW 1, we obtain the associated set of its
children (here represented as an array) [Discipline
2, Curriculum 3, Course 4, Books 5].

Figure 4: A sample of an XMD document.

5.3 XSDs MEDIATION
In order to obtain local queries for a query issued
against the global XML schema, the system must
identify the XML data sources concerning a given
query. For this task, the XML Metadata Document
(XMD) is utilized as mediation to overcome the
heterogeneity of data sources. XMD is proposed to
maintain the correspondence between the components
of the XSDs. The process of XMD generation
comprises the following steps:
1. The generated CHILD table for each XSD is
traversed to obtain a unique path for each component of
the XSD tree structure starting from the root.
5. A simple form (GUI) is generated for each XSD as
an assistant tool for mapping generation.

6. Using the GUI for each XSD, a unique index
number is assigned for the equivalent local and
global paths. Also, a null value is specified in the

The 2006 International Arab Conference on Information Technology (ACIT'2006)

case of one-to-one mapping or the required
function name is specified in other cases. By
gathering the same indices, the equivalent paths are
grouped and the XMD document is easily created.

 A sample of XMD structure with its XSD is shown
in Figure 4. Components in the global XSD are called
source components <source>, while corresponding
components in local XSDs are called destination
components <dest>. In our example there are three local
sources. Thus, each <source> element is followed by
three <dest> elements. Moreover, XMD contains
information about the required functions which is
represented by the <function> element if it is needed to
perform a specific operation for a specific <source>
element.

6 QUERY TRANSLATION PROCESS
Once the XMD is generated, queries can be posed on
the global XML schema and easily evaluated. We
developed a method for querying distributed
heterogeneous XML data sources. A query translator
unit is implemented, which is an integral part of the
mediation layer. Its function is to translate global
queries into queries that are fit to the data sources.
When a global user query is posed against the global
schema, first it is parsed, then The XMD document is
read, and also parsed by SAX, and the number of local
sources is identified. The same idea which we have
used for XML schema parsing is also applied here. In
this case the CHILD function is of the form

CHILD: SOURCE → ℘ (DESTINATION) ∪

 ℘ (OPERATION)

where the SOURCE is a set of the global paths in the
XMD, the DESTINATION is denoted to the
corresponding local paths, and the OPERATION is a
set of the corresponding semantic functions’ names
which are used for resolving heterogeneity conflicts. A
CHILD function table t is constructed for the XMD, in
which each <source> element value in XMD (global
element path) is represented as a key and associated
with their <dest> elements’ values as values (local
elements’ paths). Also <function> elements’ values in
XMD are represented in t as values and its
corresponding <path> value as key.
 The basic idea is that, for each path in the global
query (should be a <source> component in XMD), if
there is a non-empty value of the corresponding local
components (<dest> component in XMD), then by
navigating the XMD document, the paths in that query
are replaced by paths to the <dest> values to get a local
query. Otherwise, an empty query is generated for the
corresponding path in the local query, which means this
query cannot be applied to such local source. Each
(generated) local query is sent to the corresponding

local source engine, which will execute the query
locally and return the result to the global query.

7 QUERY TRANSLATION EXAMPLES
In order to support our analysis, we introduce some
examples of XML queries. Two cardinality cases are
investigated: many-to-one and one-to- many.

7.1 MANY-TO-ONE QUERY EXAMPLE

Q1:
FOR $a IN document("global.xml”)//Author//Name
 RETURN
 <Author>
 <Name> $a/LName, $a/FName </Name>
</Author>

In this example, the LName and FName elements in the
global schema are mapped to Name element in a local
schema. That means we need to provide a specific
function to separate the full name into a first name and
last name. From the XMD fragment in Figure 4, it is
clear that two different <source> element values (in
XMD document) have the same <dest> element values.
In other words, we need to split the instance value of the
destination element value to generate the appropriate
local queries. The resulted local query for AW source as
following:

FUNCTION Fname_fun ($par)
{split (“ “, $par) [1]}

FUNCTION LName_fun ($par)
{document (split (“ “, $par) [2])}

FOR $b IN document(“source1.xml”)//Book
RETURN
 <Book> FName_Fun($a/name),

LName_Fun($a/name)
</Book>

7.2 ONE-TO-MANY QUERY EXAMPLE

Q2:
FOR $b IN document("global.xml")//Book
RETURN
 <Book>$b/Format</Book>

This example illustrates the case that can be happened
when there is a node in the global schema mapped to
many nodes in a local schema. Figure 2 above
describes the mapping of this query. To answer this
kind of mapping we need to provide a specific function
to perform this task. For example, the global element
Format is represented in Wiley by two different local
elements: Pages and CoverTypes. Figure 5 shows the
execution of Q2.

The 2006 International Arab Conference on Information Technology (ACIT'2006)

Figure 5: Example of a global query translation.

8 CONCLUSIONS
In this paper, we have described our system for
resolving structural and semantic conflicts for
distributed heterogeneous XML data. We developed a
mediation layer for querying heterogeneous distributed
XML data sources. This layer holds two main parts: the
XMD and the Query Translator. We used XML
Schema language for defining the XML data sources.
The mediation layer is used for describing the
mappings between global and local schemas. XML
schemas' trees are generated automatically, each with a
GUI. Semantic discrepancies are resolved by using the
GUI tool for assigning index numbers to all database
elements' paths.
 Also, we have presented the second part of the
mediation layer, the Query Translator. It acts to
decompose global queries into a set of sub-queries. A
global query from an end-user is translated into local
queries for XML data sources by looking up the
corresponding paths in the XMD. Java 2, JDOM,
JavaCC, and the Java-Servlet server were used as tools
for the prototype implementation of this proposal.
 Our implementation is still early naive prototype;
many issues remain to be achieved. In the future, we
plan to involve more features of XML Schema. For
example, the current prototype does not support paths
that contain wildcards. Also, we plan to move to
XQuery, instead of Quilt.

REFERENCES
[1] Almarimi A., and Pokorny J., “A Mediation

Layer for Heterogeneous XML schemas,” The

International Journal of Web Information

Systems (IJWIS), vol. 1, no. 1, pp. 25-32, 2005.
[2] Baru C., Gupta A., Ludascher, B Marciano R.,

Papakonstantinou Y., Velikhov P., and Chu V.,
“XML-Based Information Mediation with
MIX,” in Proceedings of the ACM SIGMOD

Int. Conf. on Management of Data, pp. 597-599,
1999.

[3] Chamberlin D., Robie J., and Florescu D.,
“Quilt: An XML Query Language for
Heterogeneous Data Sources,” in ACM

SIGMOD Associated Workshop on the Web and

databases, Dallas, Texas, pp. 53-62, 2000.
[4] Haas L., Kossman D., Wimmers E., and

Young J., “Optimizing Queries across Diverse
Data Sources,” in: proceedings of 23rd Int. Conf.
On VLDB, Athens, Greece, pp. 276-285, 1997.

[5] Lenzerini M., “Data Integration: A Theoretical
Perspective,” in Proceedings of the ACM

Symposium on Principles of Database Systems,
Madison, Wisconsin, USA, pp. 233-246, 2002.

[6] Nam Y., Goguen J., Wang G., “A Metadata
Integration Assistant Generator for
Heterogeneous Distributed Databases,” in

Proceedings of the Confederated International

Conferences DOA, CoopIS and ODBASE,
Irvine CA, LNCS 2519, Springer, pp. 1332-
1344, 2002.

[7] Papakonstantinou Y., Garcia-Molina H., Ullman
J., MedMaker: “A Mediation System Based on
Declarative Specifications,” in Proceedings of

The 2006 International Arab Conference on Information Technology (ACIT'2006)

the IEEE Int. Conf. on Data Engineering, New
Orleans, LA, pp. 132-141, 1996.

[8] Ullman J., “Information Integration Using
Logical Views” in Proceedings. of the Int. Conf.
on Database Theory, pp. 19-40, 1997.

[9] Wiederhold G., “Mediators in the Architecture
of Future Information System,” in IEEE

Computer Magazine, vol. 25, no. 3, pp. 38-49,
1992.

[10] W3C Consortium: Extensible Markup Language
(XML), www.w3.org/TR/2000/REC-xml

[11] W3C Consortium: XML Schema,
www.w3.org/TR/2001/REC-xmlschema-0-
20010502/

[12] SAX 1.0, The Simple API for XML,
www.perfectxml.com/wp/3110_Chapter06/cont
ents.htm

