
The 2006 International Arab Conference on Information Technology (ACIT'2006)

ERRDS: A CASE TOOL TO GENERATE AN ER DATA MODEL FROM A

RELATIONAL DATABASE SCHEMA

NABIL ARMAN

Palestine Polytechnic University

Hebron, Palestine

Abstract: A relational database (RDB) schema is a

description of database requirements in terms of a set of

relations and a set of integrity constraints. An Entity-

Relationship(ER) data model is a high-level conceptual

data model that is used frequently for the conceptual

design of databases. ER data models represent a concise

description of users' data requirements without

including implementation details. Because of that, ER

data models are usually used to communicate with non-

technical users since they are easier to understand.

Some relational database designers used the concept of

a universal relation and perform normalization to come

up with the relational database schema, without

developing an ER data model. We advocate that the

best practice for a relational database design is to start

with developing a conceptual schema like an ER data

model and then map it to a relational database schema

(as many CASE tools support). In this article, a case

tool to perform the reverse process, which is generating

an ER data model from a relational database schema, is

presented. This tool is very useful in obtaining a

conceptual schema from a relational database schema.

This tool can also be thought of as a kind of reverse

engineering case tool that aids in the reverse-

engineering of legacy databases to consider new

implementation technology options.

Keywords: Conceptual schema, ER models, automated

software engineering, case tools.

1. INTRODUCTION

The relational data model represents the

relational database as a collection of relations, where

each relation resembles a table of values. Various

constraints on data can be specified in the form of

relational constraints, including domain constrains, key

constraints, and referential integrity constraints.

An ER data model is a high-level conceptual

data model that is used frequently for the conceptual

design of databases. ER data models represent a concise

description of user's data requirements without including

implementation details. Because of that, ER data models

are usually used to communicate with non-technical

users since they are easier to understand. The main

building blocks of an ER diagram are entity types and

relationship types. The process of mapping an ER data

model to a relational database schema is well-

documented in the literature [1, 2]. Many CASE tools are

capable of doing this mapping process automatically like

Oracle Designer, ER Win, etc. On the other hand, little

emphasis has been given to the reverse process, which is

generating an ER data model from a relational database

schema. In this article, a CASE tool that can generate an

ER data model from a relational database schema is

presented. In addition, the details of the algorithm that is

used are explained.

On one hand, some vendors invest in

developing integrated CASE tools, which can aid in the

whole system development process. However, these

systems are expensive to be purchased and justified for

small-scale systems. On the other hand, there is an

increasing interest in developing CASE tools that aid in

a specific phase of system development, such as the

normalization process of a relational database system

[4]. A tool that performs the identification of

composition relationships for UML Class Diagrams is

presented in [5]. The modeling of web-based dialog

flows for automatic dialog control is explained in [6].

Software systems unit test selection based on

operational violations is presented in [7]. These tools

are meant to aid in specific task rather than being used

in the whole system development process. ERRDS

represents a system, in this category, that is aimed at the

reverse-engineering of a relational database schema and

obtaining an ER schema from this relational schema.

2. GENERATING AN ER DATA

MODEL FROM A RELATIONAL

DATABASE SHCHEM

 Consider the relational database schema:

R1(A11,A12,…,A1i)

R2(A21,A22,…,A2j), FK: A22�R1(A11)

R3(A31,A32,…,A3k)

R4(A41,A42,…,A4l), FK: A41�R1(A11) and FK:

A42�R3(A31)

R5(A11,A52,…,A5m)

R6(A11,A62,…,A6n)

This schema will be used to illustrate the process of

generating an ER from a relational database schema.

Primary keys are underlined. Foreign keys are

represented using arrows where the arrow starts from

the referencing attribute and points to the referenced

attribute.

 A relational database schema consists mainly

of the following:

1. Relations

2. Primary Keys

3. Foreign Keys

An ER schema consists mainly of the following:

1. Entity Types

2. Attributes

3. Relationship Types

It is requested to generate ER constructs that can be

mapped to the relational database constructs. The

process is outlined in the following steps:

1. Relations: Relations are mapped to Entity Types.

Primary keys of the relations become the entity types'

key attributes. Relations' attributes become the entity

types' attributes. For example, R1(A11,A12,…,A1i) is

mapped to an entity type with a key attribute A11 and

regular attributes A12,…,A1i.

2. Foreign Keys: A foreign key is represented by an

attribute or a set of attributes named "Referencing

Attribute(s)" in the referencing relation that refer to an

attribute or set of attributes named "Referenced

Attribute(s)" in another relation or in the same relation

when there is a recursive relationship type. Foreign

keys in a relational database schema represent the

relationship types in an ER schema. Therefore, they are

mainly used to specify the relationship types

between/among entity types. A set of different cases

may occur:

2.1 Relations with one foreign key: If a relation has

one foreign key then there is a relationship type

between the entity types that represents this relation

and the entity type that represents the relation

having the "Referenced Attribute". The cardinality

ratio could be a 1:1 or N:1. Since 1:1 is a special

case of N:1, we generally choose N:1. For example,

FK: A22�R1(A11) means that there is a relationship

type between the entity type representing R2 and

the entity type representing R1.

2.2 Relations with two foreign keys: If a relation has

two foreign keys then there is a relationship type

between the entity types that participate in this

relationship (no entity type in this case). The entity

type that represents the relation having the first

"Referenced Attribute" and the entity type that

represents the relation having the second

"Referenced Attribute" become the participating

entity types in this relationship type. The

cardinality ratio of this relationship type is M:N. If

a relation with two foreign keys has additional

attributes, these additional attributes become the

relationship type attributes. For example, the

foreign keys FK: A41�R1(A11) and FK:

A42�R3(A31) in R4 means that this relation

represents a M:N relationship type between the

entity type representing R1 and the entity type

representing R3 with the remaining attributes in R4

representing relationship type attributes.

2.3 Relations with more than two foreign keys: If a

relation has more than two foreign keys then there

is an n-ary relationship type among these entity

types that participate in this relationship type (no

entity type is generated in this case). The entity

type that represents the relation having the first

"Referenced Attribute" and the entity type that

represents the relation having the second

"Referenced Attribute" …etc, become the

participating entity types in this relationship type.

The cardinality ratio of this relationship type is

M:N in all sides. If a relation with more than two

foreign keys has additional attributes, these

additional attributes become the relationship type

attributes. In fact, this is a generalization of 2.2 and

the example in 2.2 applies here.

4. Relations with all primary key attributes: If a

relation's primary key consists of another relation's

primary key and other attribute(s), then the relation was

a result of a mapped multivalued attribute. In this case,

the attribute other than the original relation's primary

key becomes a multivalued attribute of the original

relation. If there were more than one attribute, other

than the primary key, then the multivalued attribute is

also composite and it becomes a complex attribute in

the entity type that corresponds to the original relation.

For example, relation R5 contains A11 as part of its

primary key and A11 is R1's primary key. Thus, the

attributes of R5, other than A11, represent a

multivalued/complex attribute of the entity type

representing R1.

5. Relations with compound primary keys: If a relation's

primary key consists of another relation's primary key

and other attributes, with additional attributes not being

part of the primary key, then the relation was a result of

a mapped weak entity type. In this case, a weak entity

type is generated with the attribute(s) that were part of

the primary key become the partial key of the weak

entity type and the rest of the attributes become the

weak entity type attributes. For example, R6 has A11 as

part of its primary key and A11 is R1's primary key (i.e.,

the entity type representing R1 is the owner entity type

of the weak entity type representing R6). Thus, R6

represents a weak entity type with A62 as a partial key

and the remaining attributes represents the weak entity

type attributes.

The 2006 International Arab Conference on Information Technology (ACIT'2006)

3. DEVELOPMENT PHASES

ERRDS is a CASE tool application that is used

to generate a conceptual schema from a relational

database schema. The remaining of this section is

organized as follows: In section 3.1 the system

requirements analysis is presented. Section 3.2 presents

software system design. In section 3.3, software system

implementation is summarized. Finally, section 3.4

presents software testing and the demo of the system.

3.1 SOFTWARE SYSTEM

REQUIREMENTS ANALYSIS

ERRDS functional requirements can be

summarized by the following functions:

• Reading Relational Database Schema through a

GUI interface or from an XML file. The system

input will be a group of relations that represents a

certain relational database schema with referential

integrity constraints. These constraints are

represented using the primary keys and foreign

keys.

• Generating an ER schema according to the

relations and integrity constraints.

• Producing the ER schema either as a textual

description, that can be saved in a text file for

future use, or as an XML file with self-explanatory

tags.

These major activities represent the major

functional requirements of the system. The non-

functional requirements are similar to those required by

any software application.

3.2 SOFTWARE SYSTEM DESIGN

The software system design consists of two

major activities, namely, GUI interface design, and the

application design. The GUI interface design is a

standard windows application interface with minimal

number of controls to improve the efficiency of the

system. Sample screens are shown in the testing phase

in section 3.4. The application includes functions to

handle the input and output in different formats, as

explained before. The main algorithm for the generation

of the ER schema from the relational database schema

is summarized by the following pseudo code:

ERRDS_Main_Algorithm(Input: RDB schema,

Output: ER schema)

begin

 for each relation r in RDB schema do

 begin

 Store the input in an array after reading from the

 GUI interface or extracting from an XML file.

 // Check the number of attribute in PK

 if number of attribute in PK==1 then

 The relation represents a regular entity type

 else if number of attribute in PK ==2 and

 the relation is all-key relation then

 The relation represents a multivalued attribute

 else if number of attribute in PK>2 and

 the relation is all-key relation then

 The relation represents a complex attribute

 else

 The relation represents a weak entity type

 // Handling relationship types

 if number of FKs==1 then

 The entity type representing relation r

 participates in a relationship type

 else if number of FKs=2 then

 if FKs are primary key of the relation then

 The relation represents a binary M:N

 relationship type

 else

 The entity type representing relation r

 participates in two relationship types

 else if number of FKs>2 then

 if FKs are primary key of the relation then

 The relation represents an n-ary M:N

 relationship type

 else

 The entity type representing relation r

 participates in n relationship types

 end for

end

3.3 SOFTWARE SYSTEM

IMPLEMENTATION

ERRDS System was implemented using

Microsoft VB.NET, which is part of Microsoft Visual

Studio.NET. VB.NET has many advantages, including

rich GUI components, improved availability and

scalability, simplified development environment,

simplified deployment, and improved performance, to

name just a few [3].

The main GUI interface, implemented using

Microsoft VB.NET, is shown in Figure 1.

The File menu has a number of menu items whose

functionality is self-explanatory. It includes an Open

menu item to open an existing file. A Save As menu

item is used to save the generated ER model description

in a file. Finally, the Exit menu item is used to exit the

application. The Edit menu has a number of menu items

whose functionality is self-explanatory. It includes the

standard Edit operations like Copy, Paste and Delete

menu items. The Relational Schema menu has two

menu items. The User Input specifies that the relational

database schema to be input to the application is to be

read from a GUI form. The XML File menu item

specifies that the relational database schema to be input

to the application is to be read from an existing XML

file. Finally, the Help menu contains two menu items.

The View Help menu item is used to show a number of

tips to help and guide the database designer in using the

system. The About menu item shows a brief description

of the application and other relevant information.

The 2006 International Arab Conference on Information Technology (ACIT'2006)

Figure 1. Main GUI of ERRDS

Figure 2. Input Form

Figure 3. Output Form

Figure 4. Output in XML Format

The 2006 International Arab Conference on Information Technology (ACIT'2006)

3.4 SOFTWARE SYSTEM TESTING AND

DEMO
Users/database designers can interact with the

system GUI interface by completing simple forms and

selecting the appropriate menu items. A user can add a

relation using a form as shown in Figure 2.

 The output describing an ER schema from a

relational database schema is shown in Figure 3.

The input may come from an XML file that

can also be viewed from the application. The output of

the application can be in XML format as shown in

Figure 4. Only the relevant content of the XML

document is displayed. Other meta information is not

shown to save space.

 4. KEY SUCCESS FACTORS AND

ADVANTAGES

ERRDS is a CASE tool application aims at providing

the relational database designers community with an

easily accessible way to generate an ER schema from a

relational database schema, instead of purchasing an

expensive CASE tool like Oracle Designer or other

tools. More specifically, ERRDS system: reduces the

efforts to generate an ER schema from a relational

database schema using a cost-effective tool. Therefore,

ERRDS can be considered as a contribution to the

promotion of automated software engineering.

5. CONCLUSION

A CASE tool that generates an ER schema

from a relational database schema is presented. This

tool can help in migrating legacy databases to newer

and more powerful database servers by producing a

conceptual schema that is very useful in database

development. The tool can also help in maintaining the

original database schema. Putting this system in use

doesn't mean that the development of the system has

ended but more development can be done to improve

the system efficiency and its functionality. We are

considering the generation of an ER Diagram using a

specification format similar to the Microsoft Visio

format so that the diagram can be opened in Microsoft

Visio. In addition, obtaining relational database schema

directly from relational DBMS/servers such as Oracle

and MS SQL servers and generating the output as

described, is under consideration.

REFERENCES

[1] Elmasri, R. and Navathe, S., Fundamentals of

Database Systems, Addison Wesley, 2004.

[2] Silberschatz, A., Korth, H. and Sudarshan, S.,

Database System Concepts, McGraw Hill, 2005.

[3] Deitel, H., Deitel, P. and Nieto, T., Visual

Basic.NET How to Program, 2nd Edition, Prentice Hall,

2002.

[4] Arman, N., “Normalizer: A Case Tool to Normalize

Relational Database Schemas,” Information Technology

Journal, pp. 329-331, Vol. 5, No. 2, ISSN: 1812-5638,

2006.

[5] Milanova, A., "Precise Identification of

Composition Relationships for UML Class Diagrams,"

Proceedings of ASE-2005: The 20th IEEE Conference

on Automated Software Engineering, pp. 76-85, IEEE

CS Press, November, Long Beach, California, 2005.

[6] Book, M. and Gruhn, V., "Modeling Web-Based

Dialog Flows for Automatic Dialog Control,"

Proceedings of ASE-2004: The 19th IEEE Conference

on Automated Software Engineerin, IEEE CS Press,

November, Linz, Austria, 2004.

[7] Notkin, X., "Tool-Assisted Unit Test Selection

Based on Operational Violations," Proceedings of ASE-

2003: The 18th IEEE Conference on Automated

Software Engineering, IEEE CS Press, November,

Montreal, Canada, 2003.

