
The 2006 International Arab Conference on Information Technology (ACIT'2006)

 ١

 An Extended Knowledge Management Framework During Software
Development Life Cycle

Ali Ahmad Alawneh

Ph.D. Student in MIS, Faculty of Information Systems & Technology, Arab Academy for Banking & Financial Sciences,

Amman- Jordan
alawneh2001@yahoo.com

ABSTRACT

Knowledge is one of the organization’s most important

values that influencing its competitiveness. One way to

capture organization’s knowledge and make it available

to all their members is through the use of knowledge

management systems. In this paper I discussed the

importance of knowledge management in software

development and I presented an infrastructure to deal

with knowledge management in software engineering

environments (SEEs).

Knowledge is one of the organization’s most valuable

assets. In the context of software development, knowledge

management can be used to capture knowledge and

experience generated during the software process

This Research paper addresses a new way of thinking

about the role of knowledge management in software

engineering environments through developing a new

extended hybrid framework that combines a five types of

knowledge(user requirements knowledge, functional

domain knowledge, technical knowledge, project status

knowledge, and project experience knowledge) with five

phases of software development (planning, analysis,

design, implementation , and maintenance & support)

with five phases of knowledge management life cycle(

capture, creation , codification, communication, and

capitalization). This new framework I called “An

Extended Knowledge Management Framework during

Software Development Life Cycle”.

This paper highlights on knowledge management in

software environments, its challenges, opportunities,

implementation, and its success factors.

Keywords: software development (SD), knowledge (K),

knowledge management (KM), organizational memory

(OM), requirements knowledge, domain knowledge,

technical knowledge.

1. INTRODUCTION
Software development is a collective, complex, and
creative effort. In order to produce quality software,
software organizations are trying to better use one of its
most important resource: the organizational software
engineering knowledge.

The demands on software development are increasing.
Shorter time-to-market, better quality and better

productivity are more and more goals to be achieved. To
meet these requirements, software organizations have
tried to better use one of its most important resource: the
organizational software engineering knowledge.

Historically, this knowledge has been stored on paper or
in people’s mind. When a problem arises, we look for
experts across our work, relying on people we know, or
we look for documents. Unfortunately, paper has limited
accessibility and it is difficult to update. In the other
hand, in a large organization, it can be difficult to localize
who knows some matter, and knowledge in people’s
mind is lost when individuals leave the company.
Important discussions are lost because they are not
adequately recorded. Therefore, knowledge has to be
systematically collected, stored in a corporate memory,
and shared across the organization. In other words,
knowledge management is necessary.

In the context of software development, KM can be used
to capture the knowledge and experience generated
during the software process. Reusing knowledge can
prevent the repetition of past failures and guide the
solution of recurrent problems. Also, we cannot forget
that collaboration is one of the most important knowledge
sources for software organizations. But, to be effective in
the software development context, a KM system should
be integrated to the software process

Knowledge Management is an emerging discipline that
promises to capitalize on organizations’ intellectual
capital. The concept of knowledge is far from new and
phrases containing the word knowledge such as
“knowledge bases” and “knowledge engineering” has
been around for a while.

With an orientation to knowledge management in
software development organizations, Davenport and
Prusak describe knowledge as “a fluid mix of framed
experience, values, contextual information, and expert
insights and grounded intuitions that provides a
framework for evaluating and incorporating new
experiences and information. It originates and is applied
in the minds of the knower. In software organizations,
knowledge often becomes embedded not only in
documents or repositories, but also in organizational
routines, processes, practices, and norms” (Davenport
and Prusak, 1998).

The 2006 International Arab Conference on Information Technology (ACIT'2006)

 ٢

Software development is a complex set of tasks. It
involves several scientific disciplines, like understanding
the needs of other people, and technical issues like
transferring requirements into a reliable and efficient
computer program. It involves planning the process of
developing the software, organizing work between
several people, and sharing mental models on the status
of the software in development. Software development is
a discipline where one has to master both social and
technical skills.

 The first argument in favor of managing knowledge in
software engineering is that it is a human and knowledge
intensive activity (Birk, et. al., 1999).

But as software development projects grow larger and the
discipline moves from craftsmanship to engineering, it
becomes a group activity where individuals need to
communicate and coordinate. Individual knowledge has
to be shared and leveraged at a project and organization
level, and this is exactly what KM proposes.

In software development one can identify two types of
knowledge:
1. Knowledge embedded in the products (artifacts), since
they are the result of highly intellectual, creative
activities.
2. meta-knowledge that is knowledge about the products
and processes

Software organizations are heavily dependent on tacit
knowledge, which is very mobile” (Tiwana, 2000). If a
person with critical knowledge about processes and
practices suddenly leaves the organization, severe
knowledge gaps are created (Br ِ◌ssler, 1999).
It is more important for Software Engineering
organizations to exploit and manage their intangible
assets in contrast to their physical assets” (Tiwana, 2000).

Software development organizations are knowledge-
intensive firms where the knowledge is mainly embedded
in human beings and is largely in the form of tacit
knowledge.

This paper identifies the following critical knowledge
areas:
� User requirements knowledge
� Functional domain knowledge
� Technical knowledge
� Project status knowledge
� Project experience knowledge.

2. RESEARCH PROBLEM
Software engineering is a knowledge intensive business
and as such it could benefit from the ideas of knowledge
management. The important question is, however, where
does knowledge reside in software engineering?

It is clear that software engineering involves a multitude
of knowledge-intensive tasks: analyzing user
requirements for new software systems, identifying and
applying best software development practices, collecting

experience about project planning and risk management,
and many others (Birk, et. al., 1999).

Software engineering is a complex business that involves
many people working in different phases and activities.
The knowledge in software engineering is diverse and its
proportions immense and growing. Organizations have
problems keeping track of what this knowledge is, where
it is, and who has it. A structured way of managing the
knowledge and treating the knowledge and its owners as
valuable assets could help organizations leverage the
knowledge they possess.

3. KNOWLEDGE MANAGEMENT AND

SOFTWARE ENGINEERING

ENVIRONMENTS
Success in an increasingly competitive marketplace
depends critically on the quality of the knowledge, which
organizations apply to their business processes. The
challenge of using knowledge to create competitive
advantage becomes more crucial.

Software development is a collective, complex, and
creative effort. As such, the quality of a software product
heavily depends on the people, organization, and
procedures used to create and deliver it. In other words,
there is a direct correlation between the quality of the
software process and the quality of the software
developed [11].
4. THE NEED FOR CAPTURING AND

SHARING PROCESS AND PRODUCT

KNOWLEDGE
4.1. THE NEED FOR DOMAIN KNOWLEDGE
Software development not only requires knowledge about
its own domain, but also about the domain for which
software is being developed.
Domain knowledge that no one in the organization
possesses must be acquired either by training or by hiring
knowledgeable employees. Knowledge Management can,
however, help organize the acquisition of new knowledge
and it can help identify expertise as well as capture,
package and share knowledge that already exists in the
organization.

5. CHALLENGES FOR KNOWLEDGE

MANAGEMENT IN SOFTWARE

ENGINEERING
Implementing knowledge management in any
organization is a challenge because of the time and effort
that is required before it starts to return on the
investment. Software organizations seem to have even
less time than others because of the fast pace of the
business.

Another challenge is the elusiveness of software. Unlike
products of other domains, software is not visible
(compare with buildings in the civil engineering domain)
(Devanbu, et. al., 1990). Invisibility leads to less reuse of
the system. Another result is that software developers are
not accustomed to reuse, which is a problem because the
idea behind knowledge management is reuse of assets.

The 2006 International Arab Conference on Information Technology (ACIT'2006)

 ٣

The most problematic challenge to knowledge
management is that most of the knowledge in software
engineering is tacit and will never become explicit. It will
remain tacit because there is no time to make it explicit.
A way to address this problem can be to develop a
knowledge sharing culture, as well as technology support
for knowledge management, never forgetting that the
main asset of the organization is its employees.

6. OPPORTUNITIES FOR KNOWLEDGE

MANAGEMENT IN SOFTWARE

ENGINEERING
It is clear that a knowledge management system needs to
be supported by appropriate IT technology (Br ِ◌ssler,
1999). While IT technology can be intimidating to many
people, this is not the case for software engineers
(Schneider, 2001).
The other obvious benefit with software engineering
activities is the fact that all artifacts are already in
electronic form (Schneider, 2001) and, thus, can easily be
distributed and shared.

7. KNOWLEDGE IN SOFTWARE

ORGANIZATIONS
When individuals team up to solve a problem (or to
develop a product), they form a community of practice.
When individuals communicate and exchange
information related to a common topic, but for solving
different problems within or outside a company, they
form communities of interest, such as groups of Java
programmers. These communities heavily utilize web
technology for knowledge sharing.

In software development, learning occurs during projects.
For organizational learning, knowledge from all projects
must be documented, collected and organized into a
repository that will support decision making for future
projects.

8. KNOWLEDGE MANAGEMENT IN
SOFTWARE ENGINEERING
Knowledge management is seen as a strategy (or
practice, systematic process, set of policies, procedures
and technologies) that creates, acquires, transfers, brings
to the surface, consolidates, distills, promotes creation,
sharing, and enhances the use of knowledge (or
information, intellectual assets, intellectual capital) in
order to improve organizational performance; support
organizational adaptation, survival and competence; gain
competitive advantage and customer commitment;
improve employees’ comprehension; protect intellectual
assets; enhance decisions, services, and products; and
reflect new knowledge and insights.

It is clear that software engineering involves a multitude
of knowledge-intensive tasks: analyzing user
requirements for new software systems, identifying and
applying best software development practices, collecting
experience about project planning and risk management,
and many others (Birk, et. al., 1999).

8.1. Knowledge Management support for core

Software Engineering activities
The core software engineering processes and activities
that might occur in a typical software engineering project
are all documents (even the source code and the
executable programs can be regarded as documents).
(Birk, et. al., 1999). The work is, many times, focused on
authoring, reviewing, editing, and using these documents.

Because software engineering is so dominated by the
documents that are produced during the various activities
and processes, the foundation for a knowledge
management system is a document management system.
Hand in hand with document management coming the
need of distributing information about the project, which
calls for general information management.

8-2. Organizational Memory for Software

Development
Learning from experience requires remembering history.
Individual memory is, however, not sufficient and the
entire organization needs a memory to explicitly record
critical events. There are at least three distinguishable
forms of organizational memory:
1. Memory consisting of regular work documents and
other artifacts that were developed primarily to assist
development of the product (examples in this category
are requirements specification, and design specification)
2. Memory consisting of entities that were developed
specifically to support the organizational memory
(examples are lessons learned and post-mortem analyses)
3. A mix of the first two forms

9. Implementation of Knowledge

Management
Implementing a KM system might, however, not be so
simple, involving both challenges and obstacles.
Examples of the most important issues noted by D.
Rigby, analysts for Bain&Co. (Lawton, 2001) are:

- Technology issues:

��KM involves software technology, but it is not
always simple or even possible to integrate all the
different subsystems and tools to achieve the level of
sharing that was planned.
�� Inadequate security. While the idea behind KM is to
share knowledge, it is important not to share knowledge
assets with the wrong audience (e.g., competitors and
former employees). This issue might limit the extent to
which knowledge can be shared in the organization.

- Lack of standards:

��Different parts of the organization might use terms
and concepts in different ways. This lack of standards can
inhibit sharing of knowledge between them.
- Organizational issues:

��It is a mistake to focus only on technology and not on
methodology. It is easy to fall into the technology trap
and devote all resources to technology development
without planning for a KM implementation approach.
- Individual issues
��Employees do not have time to input knowledge or
do not want to give away their knowledge.

The 2006 International Arab Conference on Information Technology (ACIT'2006)

 ٤

(K) Capture

(K)

Capitalization

(K) Creation (K)

Codification

(K)

Communication

Organizational

Memory

New

Knowledge

(K) Of the

individuals

Figure1: A five C’s knowledge management life cycle (Khaldi, Alawneh&khateeb, 2005)

Feedback

10. An Extended Knowledge Management

Framework during Software Development

Life Cycle.
10.1. A Five C’s knowledge management Life

Cycle (By Al-khaldi, Alawneh, & khateeb, 2005)
• Knowledge capture phase

• Knowledge creation phase

• Knowledge codification phase

• Knowledge communication phase

• Knowledge capitalization phase

10.2. A Five Layered knowledge management

framework to model the software team

knowledge
Software development is no longer a homogeneous field.
A socio-technical approach and a commitment to project
management principles are essential for attaining success
in software development projects. But, managing project
knowledge is another critical factor that has to be taken
into consideration. Managing knowledge in globally
distributed teams involves managing software projects’
knowledge through the life-cycle of the development of
the software project. The life-cycle of software
development projects can be defined using the systems
development life-cycle approach as shown in

Figure2. Figure 2 also shows the various types of
knowledge that needs to be managed during the project
life-cycle. It has been observed that the following project
related
Critical knowledge needs to be managed as the project
progresses:
• User requirements knowledge
• Functional domain knowledge
• Technical knowledge
• Project status knowledge

• Project experience knowledge.

The 2006 International Arab Conference on Information Technology (ACIT'2006)

 ٥

10.2.1 Need for Managing User Requirements

Knowledge:
Meeting the client’s requirements is critical to a software
project’s success; Clients may be unable to articulate
their requirements. They may articulate the wrong
requirements. Besides, different client groups may
disagree over requirements. Their articulation of
requirements may be misunderstood by the software
developers. As a result of this and environmental
volatility, requirements may change during a project.
This uncertainty may lead to conflict, delays, cost over-
runs, and failure to meet the client’s needs. Requirements
refer to the descriptions of properties, attributes, services,
functions, and/or behaviors needed in the software to
accomplish the goals and purposes of the system (Carr,
2000). At the system level, requirements should address
the needs but should not specify a design solution. This
should be left to the software designers in the team.
Thus, adopting a knowledge management perspective of
requirements, Walz, Elam and Curtis (1993) make some
specific recommendations for software project managers:
• Increase the amount of application domain knowledge
across the entire software development team.
• Actively promote the acquisition, sharing, and
integration of knowledge within a software design effort
through team facilitation techniques and formally
recognize these activities by allocating time to them.

• Much of the information that needs to become
part of the team’s memory is not captured
formally, particularly, in standard
documentation. Therefore, new tools (such as
intranets) are needed to easily and unobtrusively
capture this process-based information.

10.2.2 Need for Managing Technical and

Functional Domain Knowledge
Knowledge from multiple technical and functional
domains is a necessity for software development. This
knowledge falls along at least three inter-dependent
domains (Henninger, Lappala and Raghavendran, 1995):
• Application domain such as manufacturing, banking,
transportation, etc.
• Technical domain
• Best practices in the two domains.

10.2.3 Need for Managing Project Status

Knowledge
The third type of project knowledge, which must be
available to the software team, is project status
knowledge. Project documentation (such as requirements
specification, design documentation, programme
specifications, project plans, etc.) and standards (such as
checklists, templates, standard procedures, etc.) need to
be managed.

10.2.4 Need for Managing Project Experience

Knowledge
Although issues are always project-specific, they may be
having some generic patterns. Therefore, many of the
issues encountered in a project could be relevant to other
project sites or other projects as well. For example, the

Issues may be pertaining to important system
requirements, instructions or clarifications for customers,
innovative design ideas for addressing some problems,
Precautions to be taken when using some software for
development, etc.

Bharadwaj & Saxena(2005)

The 2006 International Arab Conference on Information Technology (ACIT'2006)

 ٦

10.3. An Extended Knowledge Management

Framework during Software Development Life

Cycle: A combination of Five Layered & Five

C’s Models

Figure3: An Extended Knowledge Management
Framework during software development life
cycle along with knowledge management life
cycle. (Alawneh, 2006)

The above framework shows that in order to best utilize
and harness the knowledge of employees during software
development life cycle in software organizations. First, in
planning phase, user requirements knowledge should be
captured through Searching for several sources of
knowledge that is necessary and related for performing
the work , perceiving and sensing needs and requirements
of work from knowledge resources , acquiring knowledge
that already exist in organization from its appropriate
sources at appropriate time where it is needed , extracting
the knowledge of other people in organization ,
formulation of conceptual knowledge or idea (pre-mature
vivid) from the knowledge that is available in
organization , using metaphor mechanism in order to
extract the hidden knowledge in organization , using
brainstorming mechanism in order to solve the work
problems of the organization .
 then, functional domain knowledge should be created
during analysis & design phases through Conducting

research activities in order to discover the knowledge in
the organization , exploitation from past experiences in
the organization to discover new knowledge , creating
new knowledge through the continuous learning in the
organization , next, the project status knowledge should
be codified throughout all phases of software
development life cycle through Classification and
categorization of existed knowledge in the organization
according to its nature into categories such as
administrative& technical & financial…etc, storing
knowledge in organization in locations the are easily to

retrieve , mapping knowledge in the organization so it
can be easily to access whenever needed , organizing
knowledge in the organization in a way so it is
understandable to all organizational members, next, the
project experience knowledge should be communicated
among employees throughout all phases of development
through Considering source , nature , and type of
knowledge when transferring and sharing in the
organization , motivating organizational members for
participation in their creative and intellectual resources ,
encouraging and enhancing the culture of knowledge
sharing among organizational members , providing
information and communication technology in order to
transfer knowledge among people in the organization,
finally, the technical knowledge should be capitalized
during implementation, maintenance and support phases
through Investing and utilizing organizational knowledge
in new ways and methods of doing work .

(K) Capture (K) Creation (K)

Codification

(K)

Communication

(K)

Capitalization

The 2006 International Arab Conference on Information Technology (ACIT'2006)

 ٧

11. CONCLUSION
The focus of this paper is knowledge management in
software engineering. It presents the developments in
knowledge management in general, and for software
engineering in particular, and discusses models for
knowledge management. The paper also presents
resources that can provide help, and information to
software organizations that want to better manage their
knowledge.

Software development is a knowledge- and people-
intensive activity. Groups that are geographically
distributed carry out a significant amount of the work in
software engineering. People in such groups must
collaborate, communicate, and coordinate their work,
which makes knowledge management a necessity.
However, for organizations that are large and distributed,
whose environment is continuously changing, or have a
high turnover, managing their knowledge assets is critical
for survival.

Many businesses are human and knowledge intensive.
Examples include consulting, advertisement, media,
high-tech, pharmaceutical, law, software development,
and other human capital-based organizations. Knowledge
intensive organizations have realized that a large number
of problems are attributed to un-captured and un-shared
product and process knowledge, as well as the need to
know ‘who knows what’ in the organization, the need for
distance collaboration, and the need to capture lessons
learned and best practices. These realizations have led to
a growing call for knowledge management (KM).
A characteristic of software engineering that turns out to
be an advantage over other industries in terms of
managing intellectual capital is that artifacts are already
captured in electronic form and can easily be stored and
shared. In addition, software engineers often have a
friendly attitude towards using new technology. This
means that a software organization that implements a
knowledge management system could have a good
chance to succeed with this mission

In the context of software engineering, we define
knowledge management as a set of activities, techniques,
and tools supporting the creation and transfer of SE
knowledge throughout the organization. One use of KM
is to support software process improvement (SPI)
activities. This support is important because both
software engineering and quality management techniques
fail if they are not based on a thorough knowledge of
what is needed and what has been done in a software
development organization.

Knowledge is the most powerful and ubiquitous resource
of any organization. Any activity that does not leverage
its power is clearly a sub-optimal utilization of the
resources. Software development, a highly complex and
intellectually intensive activity is not an exception. It
involves intellectual effort by individuals in teams on

projects with deadlines and deliverables that often change
over the lifetime of the project. Fluctuating requirements
and goals are occasioned both by greater clarity in
clients’ true requirements and constrains as the project
progresses as also by promising new technologies that
emerge and business exigencies that arise over time. The
need to manage in such contexts is often why the
software development process is characterized as
undisciplined, chaotic and completely unpredictable.

This paper summarizes the status of the following critical
knowledge areas:
� the most critical knowledge area is the user
requirement knowledge. Though newer processes are
introduced to manage the same, managing user
requirements still remains a challenge for the members of
the global software teams.
� Functional domain knowledge and technical
knowledge are managed well by companies but
technology updates have put pressure in identifying the
gaps and bridging it during the project execution.
� Project status knowledge has been well managed in the
global software teams with the help of formal procedures
and documentation.
� Capturing and reusing the project experience
knowledge of the existing projects and clients is still an
open issue.

Some benefits of this extended framework can be pointed
out:
• With KM integrated to software engineering
environments, it is easier for developers to create new
knowledge. In this way, the organizational memory is not
closed. It is always evolving.
• A major concern for knowledge management in
software development environment is to capture
information during the software process without
developers’ extra effort. Thus, the KM system is actively
integrated into the work process. An isolated KM system,
on the other hand, can be a barrier to innovation, because
it does not let workers share new ideas with their peers.
Closed systems do not give organizations control over
their own knowledge, since there is a gap between
knowledge creation and integration. Innovations happen
outside the KM system, and then it contains information
that is chronically out of date and that reflects an
outsider’s view of work.
• Knowledge management users are no longer passive
receivers of knowledge, but are active researchers,
constructors, and communicators of knowledge.
Knowledge can be constructed collaboratively in the
context of the work. Attention to knowledge requires
attention to people, including their tasks, motivation, and
interests in collaboration. The heart of intelligent human
performance is not the individual human mind but groups
of minds interacting with each other and with tools and
artifacts.

The 2006 International Arab Conference on Information Technology (ACIT'2006)

 ٨

REFERENCES
[1] Andrew B., "Using stakeholders, domain

knowledge, and responsibilities to specify
information systems' requirements". Journal of

organizational computing and electronic

commerce, 9(4), pp.287-296, 1999.
[2] Bharadwaj, s.s., & Saxena, B.k. "Knowledge

management in global software teams".
Interfaces VIKALPA, volume.30, no.4, pp.65-
75, 2005.

[3] Birk A., Surmann D., & Althoff K.,
"Applications of knowledge Acqusition in
Experimental Software Engineering", 11th
European Workshop on knowledge Acquisition ,
modeling , and Management",pp.67-84, 1999.

[4] Br ِ◌ssler, P. "Knowledge Management at a
Software Engineering Company - An

 Experience Report", Workshop on Learning

Software Organizations, LSO'99,
 Kaiserslautern, Germany, pp. 163-170, 1999.
[5] Barbara P. "Project memories: integrating

knowledge and requirements management".
Fraunhofer institute for experimental software

engineering (IESE), Kaiserslautern, 2000.
[6] Conradi, R."From software experience databases

to learning organizations". International journal

of software engineering and knowledge

engineering, vol.10, no.4, pp.541-547, 2000.
[7] Desouza, K.C. "Barriers to effective use of

knowledge management systems in software
engineering", communications of the ACM,
vol.46, no.1, pp.99-101, 2003.

[8] Dai, et.al. "Software warehouse: its design,
management and application". International

journal of software engineering and knowledge

engineering, vol.14, no.4, pp.395-406, 2004.
[9] Dingsoyr, T., & conradi, R." A survey of case

studies of the use of knowledge management in
software engineering". International journal of

software engineering and knowledge

engineering, vol.12, no.4, pp.391-414, 2002.
[10] D.E. O’Leary, “Enterprise Knowledge

Management”, IEEE Computer Magazine,
March, 1998

[11] Davenport H., and prusak, L. Working

Knowledge. Boston, Massachusetts: Harvard
Business School Press, 1998.

[12] Hellstrom, T., Mikaelsson, J. "Decentralizing
knowledge: managing knowledge work in a
software engineering firm". Journal of high

technology management research, 12(2001),
pp.25-38, 2001.

[13] Jahnke, H., & Walenstein. "Evaluating theories
for managing imperfect knowledge in human-
centric database reengineering environments".
International journal of software engineering

and knowledge engineering, vol.12, no.1, pp.77-
102, 2002.

[14] Komi-sirvio, S. et.al. "Toward a practical
solution for capturing knowledge for software
projects", IEEE software, may/June 2002, pp.
60-62, 2002.

[15] Lawton, G., "Knowledge Management: Ready
for Prime Time" IEEE Computer, Vol.

 34, No.2, pp.12-14, 2001.
[16] L.M.S. Borges, R.A. Falbo, “Managing

Software Process Knowledge”, Proceedings of

the International Conference on Computer

Science, Software Engineering, Information

 Technology, e-Business, and Applications

(CSITeA'2002), pp. 227 – 232, Foz do Iguazu,
 Brazil, June 2002.

[17] Morasca, S., &Ruhe, G., "Knowledge discovery
from empirical software engineering data".
International journal of software engineering

and knowledge engineering, vol.9, no.5, pp.495-
498, 1999.

[18] Muller, C., Bahrs, J., Grohau, N.," Considering
the knowledge factor in agile software
development". Journal of universal knowledge

management, vol.0, no.2, pp.128-147, 2005.
[19] Preece, A., et.al, "Better knowledge

management through knowledge engineering,
IEEE Intelligent systems, pp.36-43, 2001.

[20] Richter. H., & Abowd, G. "Tagging knowledge
acquisition sessions to facilitate knowledge
traceability", International journal of software

engineering and knowledge engineering, vol.14,
no.1, pp.3-19, 2004.

[21] Robillard, N. "The role of knowledge in
software development". Communications of the

ACM, vol.42, no.1, pp. 87-92, 1999.
[22] Rus, I. and Lindvall, M., "Knowledge

Management in Software Engineering," IEEE

Software, vol. 19, no. 3, pp. 26-38, 2002.
[23] Rus, Lindval, & Suman. "Knowledge

management in software engineering".
Fraunhofer center for experimental software

engineering (A state-of-the-art-report). Rome,
2001.

[24] Schneider, K., "Experience Magnets - Attracting
Experiences, Not Just Storing Them",

 Product Focused Software Process

Improvement, PrOFES'01, Kaiserslautern, Germany,
pp.126-140, 2001.

[25] Shaft, M., Michael, F., & Vessey, I." The role
of cognitive fit in the relationship between
software comprehension and modification". MIS

Quarterly, vol.30, no.1, pp.29-55, 2006.
[26] Struder, R., etInvesting and utilizing

organizational knowledge in new ways and
methods of doing work , enhancing feeling of
individual responsibility toward knowledge of
organization , enhancing individual
effectiveness though his acquiring of
organizational knowledge.al. ,"Next generation
knowledge management", BT technology

journal, vol.23, no.3, 175-190, 2005.
[27] Tiwana,A., Mclean, E. ," Expertise integration

and creativity in information systems
development" .Journal of MIS, vol.22, no.1,
pp.13-43,2005.

