
The 2006 International Arab Conference on Information Technology (ACIT'2006) 

 

 1

Frequent Set Mining  
Hafida Belbachir , Sid Ahmed Rahal, and  Salim Khiat

 

 

* Faculty of science, Mohamed Boudiaf U.S.T.O University of Science and Technology, Oran, ALGERIA. 

 

rahalsa2001@yahoo.com, Salim_khiat@caramail.com,  
 

 

Abstract : 

An efficient association rules algorithm was divided in two sub-problems: frequent set mining from Databases and association rules 

generation. Frequent sets lie at the basis of many Data Mining algorithms. As a result, hundreds of algorithms have been proposed in 

order to solve the first problem: the frequent set mining problem. In this paper, we attempt to survey the most successful algorithms 

and techniques that try to solve this problem efficiently. 

 

Keywords: Frequent Set Mining, Association Rule, Support, Apriori. 
 

 

1. INTRODUCTION 
Among the research tasks in excavation of data, the 

extraction of the rules of association is undoubtedly the 

task "headlight" which drew more the attention of the 

researchers and for which many work were carried out. On 

the one hand this technique allows the discovery of 

understandable and exploitable rules in a whole of bulky 

data, rules expressing of associations between items or 

attributes in a data base. 

In addition, which return also the search for associations a 

gravitational subject of research and very credit is its broad 

field of application to various fields such as marketing, 

industry, assistance with the medical diagnosis, 

telecommunications, analysis of space data, telephony, etc. 

The purpose of the extraction of the rules of association is 

to discover significant relations between binary attributes 

extracts of the data bases. An example of rule of 

association extracted from a data base of sales of 

supermarket is: "cereals and sugar � milk (support 7%, 

confidence 50%)". This rule indicates that the customers 

who buy cereals and sugar also tend to buy milk. The 

measurement of support defines the range of the rule, i.e. 

the proportion of customers who bought the three articles, 

and confidence measures defines the precision of the rule, 

i.e. the proportion of customers who bought milk among 

those which bought cereals and sugar. The extraction of 

rules of association consists in extracting the rules whose 

support and confidence are at least equal to minimal 

thresholds of support and confidence defined by the user. 

The extraction of rules of association is an iterative 

process and interactive made up of several phases active of 

the selection and the preparation of the data until 

interpretation of the results, while passing by the phase of 

research of knowledge (extraction of the frequent sets of 

attributes and generation of the rules of association). 

                                   

Two major problems for the use of the extraction of the 

rules of association gave place to many researches: the 

problem of time of extraction of the rules of association 

starting from the data file and the problem of the relevance 

and the utility of the extracted rules of association. This 

justifies that many work concerned the research of the 

frequent itemset and of the relevance of the rule of 

association, we draw up of it a state of the art in the 

following section on the first problem. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. RELATED WORKS  
This section draws up a non exhaustive state of the art of 

the research tasks in the field of the extraction of the 

frequent itemset. One finds in the literature a broad range 

of algorithms considered as alternatives of Apriori, 

allowing to generate all the frequent itemsets in a 

compromise base. 

However, one finds a very great number of frequent 

itemsets, which reduces considerably, not only the 

effectiveness but also the utility of the task. Indeed, a great 

number of frequent reasons leads to many rules of 

association, because recall that starting from only one k- 

frequent itemset one can generate 2
k
 rules. This forces the 

user to excavate (still!) in the rules to find the rules most 

interesting. 

This is why, other alternatives were proposed, in particular 

in the extraction of the condensed representations of the 

frequent itemset, the generation of the closed itemset and 

the maximum itemset as we will see it in this paragraph. 

 

2.1. FREQUENT ITEMSET (F) 

the process of extraction of rules of association. 
 

Frequent 

Itemset 

Association 

Rules 

Knowledge 

Choose and 

Prepare data 

Finding 

Frequent Itemset 

Generate 
Associate 

Rules 

visualization and 

interpretation  the results 

Data 

Base 

Data  

Prepared 



The 2006 International Arab Conference on Information Technology (ACIT'2006) 

 

 2

Algorithms of extraction of the frequent itemset according 

to the strategy adopted for the course of the lattice, and 

according to the way of calculating the support of the 

itemsets in the data base. The algorithm pioneer of search 

for frequent itemset is Apriori. This last, has the advantage 

of the simplicity of the implementation: one can 

immediately apply, by using all the references produced as 

together catalogues, without it being necessary to build as 

a preliminary a typology of these products. But this one 

presents two major disadvantages: the number of 

candidates phenomenal to generate during each iteration 

and the problem of expensive scan of the base of data for 

each iteration, which increases complexity. A certain 

number of optimizations of the Apriori algorithm was 

proposed. The fundamental idea which emerges consists in 

reducing the number of master keys in the base. 

Algorithms Apriori-TID, Partition, Sampling, DIC, Glare, 

FP-GROWTH are briefly explained in the continuation, 

where one uses indifferently the reason term or itemset. 

 

Apriori-TID[1] 

In order to improve the performances of Apriori which 

requires a number of significant course of the base of 

transactions, the authors of Apriori proposed in [1], the 

Apriori-TID algorithm. The two algorithms generate the 

candidates by using the same strategy. 

They differ in calculation from the support from the 

itemsets candidates. Indeed, Apriori-TID uses a whole 

kC
of the form (TID, {ck}) where {ck} is the list of the 

itemsets contained in the transaction identified by TID. To 

be more precise, an element of kC
is form (TID, {idk}) 

where {idk} is the list of the identifiers of the itemsets of 

size K. The support of the itemsets of Ck is equal to the 

number of appearances of each itemset in kC
. For K = 1, 

1C
corresponds to the base of transactions: the elements of 

each transaction are singletons representing the 1-itemsets 

candidates. For K > 1, kC
is built while using 1−kC

and 

Ck:an element of kC
consists of an identifier TID of an 

element of 1−kC
and list of the k-itemsets Ck contained in 

transaction TID. If this list is empty, this element is 

removed. At the time of the first iterations, kC
can be very 

large what causes a problem of storage of the lists of 

itemsets. In the other hand, the number of elements 

kC
can become smaller compared to the number of 

transactions in D, especially when K becomes larger. The 

interest of kC
is that the base of transactions D is not used 

any more to calculate the support of the k-itemsets. 

 

Partition[12] 

As the main drawback of Apriori is its slow and iterative 

support counting mechanism, Eclat has the drawback that 

it requires large parts of the (vertical) database to fit in 

main memory. To solve these issues, Savasere et al. 

Proposed the Partition algorithm [12]. 

The main difference in the Partition algorithm, compared 

to Apriori and Eclat, is that the database is partitioned into 

several disjoint parts and the algorithm generates for every 

part all sets that are relatively frequent within that part. 

This can be done very efficiently by using the Eclat 

algorithm (originally, a slightly different algorithm was 

presented). The parts of the database are chosen in such a 

way that each part fits into main memory. Then, the 

algorithm merges all relatively frequent sets of every part 

together. This results in a superset of all frequent sets over 

the complete database, since a set that is frequent in the 

complete database must be relatively frequent in one of the 

parts. Finally, the actual supports of all sets are computed 

during a second scan through the database. 

Although the covers of all items can be stored in main 

memory, during the generation of all local frequent sets for 

every part, it is still possible that the covers of all local 

candidate k-sets can not be stored in main memory. Also, 

the algorithm is highly dependent on the heterogeneity of 

the database and can generate too many local frequent sets, 

resulting in a significant decrease in performance. 

However, if the complete database fits into main memory 

and the total of all covers at any iteration also does not 

exceed main memory limits, then the database must not be 

partitioned at all and the algorithm essentially comes down 

to Eclat. 

 

DIC[3] 

Algorithm DIC was proposed by Brin et al. in [3] reducing 

the number of courses of the data base. DIC partitionne the 

data base in blocks of M transactions. During the 

calculation of the supports of the k-itemsets, after the 

course of a partition of size M of D, one checks the k-

itemsets candidates which already reached the minimum 

support, DIC uses them then to generate candidates of size 

(k+1), and starts to count their supports. Thus the support 

of candidates of different sizes is calculated during the 

same courses of D. In the other hand of the reduction in 

the number of sweepings of the data base, DIC 

simultaneously considers itemsets candidates of different 

sizes. This generate the problem of storage of the itemsets 

candidates treated simultaneously and the cost of 

calculation of the supports of the candidates which is more 

significant than for Apriori. 

 
Sampling[13] 

Another technique to solve Apriori’s slow counting and 

Eclat’s large memory requirements is to use sampling as 

proposed by Toivonen [13]. 

The presented Sampling algorithm picks up a random 

sample from the database, then finds all relatively frequent 

patterns in that sample, and then verifies the results with 

the rest of the database. In the cases where the sampling 

method does not produce all frequent sets, the missing sets 

can be found by generating all remaining potentially 

frequent sets and verifying their supports during a second 

pass through the database. The probability of such a failure 

can be kept small by decreasing the minimal support 

threshold. However, for a reasonably small probability of 

failure, the threshold must be drastically decreased, which 

can cause a combinatorial explosion of the number of 

candidate patterns. Nevertheless, in practice, finding all 

frequent patterns within a small sample of the database can 



The 2006 International Arab Conference on Information Technology (ACIT'2006) 

 

 3

be done very fast using Eclat or any other efficient 

frequent set mining algorithm. In the next step, all true 

supports of these patterns must be counted after which the 

standard levelwise algorithm could finish finding all other 

frequent patterns by generating and counting all candidate 

patterns iteratively. It has been shown that this technique 

usually needs only one more scan resulting in a significant 

performance improvement [13]. 

 

 

 

Eclat[16] 

Eclat suggested by Zaki and Al in [16] uses the vertical 

format of the data base, where for each itemset one has 

sound tidset, i.e. of the whole of all the transactions 

containing this itemset. The vertical format has the 

advantage of returning the calculation of the simpler 

support since it is a question of carrying out in this case of 

the intersections of the tidsets. Moreover this, the size of 

the data base reduces automatically since only the 

transactions concerning a itemset are used for the 

intersection. 

Eclat carries out a research of the frequent itemset  initially 

in-depth and is based on the concept of classes of 

equivalence. 

Two k-itemsets belong to the same class of equivalence if 

they have in common a prefix of size (k-1).For example 

ABC and ABD belong to the same class of equivalence. 

Each class can be treated separately in memory, which 

makes it possible to break up the lattice into sub-lattice 

where each sub-lattice represents a class of equivalence. 

In-depth research initially starts with the 1-itemsets and 

keeps the intersection of the tidsets itemsets for the same 

class of equivalence. 

Contrary to Apriori, Eclat does not know all the frequent 

itemsets on a level given before considering the candidates 

of the following level, which decreases the effectiveness, 

because the property of antimonotonicity is not usable any 

more to prune the space of research. This remains 

acceptable for the small data bases, but pruning remains 

poor and deteriorates the performances when it is a 

question of treating data bases of significant size. 

The advantage of this approach, as underlines its authors, 

is that it remains easily parallelisable, since one can 

separately seek the frequent itemset in the various classes 

of equivalence. 

 

FP-growth[5] 

One of the most cited algorithms proposed after Apriori 

and Eclat is the FP-growth algorithm by [5]. Like Eclat, it 

performs a depth-first search through all candidate sets and 

also recursively generates the so called i-conditional 

database Di, but in stead of counting the support of a 

candidate set using the intersection based approach, it uses 

a more advanced technique. 

This technique is based on the so-called FP-tree. The main 

idea is to store all transactions in the database in a tri based 

structure. In this way, in stead of storing the cover of every 

frequent item, the transactions themselves are stored and 

each item has a linked list linking all transactions in which 

it occurs together. By using the tri structure, a prefix that is 

shared by several transactions is stored only once. 

Nevertheless, the amount of consumed memory is usually 

much more as compared to Eclat. 

The main advantage of this technique is that it can exploit 

the so-called single prefix path case. That is, when it seems 

that all transactions in the currently observed conditional 

database share the same prefix, the prefix can be removed, 

and all subsets of that prefix can afterwards be added to all 

frequent sets that can still be found (Han et al., 2004), 

resulting in significant performance improvements. As we 

will see later, however, an almost equally effective 

technique can be used in Eclat, based on the notion of 

closure of a set. 

 

 

 

Discussion  

The number of swaping of the data files realized and the 

numbers of it itemsets candidates considered by the 

algorithm of extraction of frequent are two principal 

factors of the effectiveness so the response times of these 

algorithms. The importance of the number of swapings 

carried out is related to the cost of the operations of 

input/output. The importance of the number of itemset 

candidates comes owing to the fact that the operations 

relating to the latter constitute major the part of the 

computing time CPU of the algorithm. 

The algorithms presented in this section were developed 

for applications concerning of the commercial data bases. 

The data files used for their experimentation are built 

starting from data bases of sales of supermarkets and data 

files synthetic generated according to characteristics of the 

data of sales. These data are scattered and slightly 

correlated and the execution times obtained on these data 

files are weak, about a few seconds at a few minutes. 

These response times are relatively weak bus in the data of 

this longest type frequent itemset contain only one limited 

number of items (the value of µ is weak in front of m) and 

the total number of frequent itemset (of which the number 

of itemsets candidates considered depends) is reduced. In 

the case of contexts for which longest frequent itemset is 

large, i.e. for a value of µ raised, the performances of these 

algorithms are degraded considerably: 

- Apriori carries out µ iterations and thus µ swapings 

of the context to extract the frequent itemsets. For 

high values of µ , this involves significant execution 

times, the operations of input/output being very 

expensive in time. This problem is essential in the 

case of data dense for which the size of the data files 

is more significant for a number of objects and a 

number of items identical. 

  - AprioriTid requires during its execution the storage 

of the lists of OID associated with the itemsets whose 

total volume can be more significant than the size of 

the context of extraction. This problem of space of 

storage requires the use of the disc and involves 

significant execution times, particularly at the time of 

the first iterations. 

 - For Partition and Sampling, the number of k-

itemsets candidates for 1 ≤ K ≤ µ is more significant 

than for the Apriori algorithm. This involves a 

problem of memory capacity necessary to the storage 

of all the candidates of all sizes at the time of the final 

phase of the algorithm. Moreover, the last sweeping of 



The 2006 International Arab Conference on Information Technology (ACIT'2006) 

 

 4

the context which makes it possible to calculate the 

supports of all the itemsets candidates requires a 

significant computing time whose share is useless 

because it relates to infrequent itemset overall. 

 - For DIC, after 

ème

M

B

the iteration, M

B

sets of 

itemsets candidates (of different sizes) is considered 

simultaneously at the time of each iteration. 

Moreover, each one of these Ck sets of k-itemsets 

candidates is a superset of the Ck unit generated by 

Apriori. Arise then the difficulties of the space of 

storage of the sets of itemsets candidates treated 

simultaneously during the readings of the data file and 

the total cost of the calculation of the supports of the 

candidates which is more significant than for Apriori. 

Indeed, DIC determines the supports of some itemsets 

candidates infrequents which are not considered by 

Apriori. 

The data bases characterized by a value of µ high represent 

a significant share of the real data bases. It is thus 

necessary to develop new algorithms of extraction of the 

frequent itemsets which make possible the extraction of 

rules of association starting from this type of data in 

reasonable times. The dense or correlated data are also 

characterized by a value of µ high. However, in this type 

of data, the problem of the effectiveness of the algorithms 

of extraction of the frequent itemsets is exacerbated by a 

strong density of the frequent itemsets of big size. 

 

2.2.MAXIMUM FREQUENT ITEMSET(MF) 
The algorithms such as Apriori and its derivatives were 

developed for compromise data bases of sales and were 

tested mainly on synthetic data files. These data scattered 

and are slightly correlated what gives a relatively weak 

execution time. In this type of data bases, longest itemsets 

frequent contains only one limited number of items, 

compared to the number of transactions. But the 

performances of these algorithms are degraded 

considerably, when they are dense data bases, where the 

frequent itemsets can be very long, as in the case of the 

biological or stock exchange data bases. The longest 

itemsets among the frequent itemsets are in fact the 

maximum itemsets constituting the positive edge. 

 

                            MF= {l∈F | ∀l’⊇l, supp(l’)<γ } 

 

The maximum itemsets are frequent itemsets of which all 

the supersets are not very frequent. The problem of 

extraction of the frequent itemsets breaks up then as 

follows: 

      1. Extraction of the whole of the maximum frequent 

itemsets MF; 

      2. Calculation of the supports of the subsets of the 

maximum MF itemsets by carrying out only one course of 

the data base. 

 

Generally, the algorithms dedicated to the extraction of the 

maximum frequent itemsets carry out simultaneously a 

course upwards (research by levels) and from top to 

bottom (in order to quickly identify maximum big sizes) in 

the lattice of the itemsets. 

Several algorithms were proposed. Among them let us 

quote MaxMiner [2], Pincer Search [8], MaxEclat [16], 

MaxClique [16], and GenMax [14].                       

 

Discussion  

The algorithms presented in this section seek the 

maximum frequent itemsets simultaneously bottom to the 

top and the top downwards among the frequent itemsets by 

maintaining a unit containing largest itemsets frequent 

possible. The algorithms of extraction of the frequent 

itemsets by levels require µ iterations in order to determine 

all the frequent itemsets, µ being the size of the frequent 

itemsets (maximum) longest. By identifying these itemsets 

by the research top to the bottom, the algorithms of 

extraction of the maximum frequent itemsets reduce the 

total number of iterations necessary to the extraction of the 

frequent itemsets in the case when µ  is high. Moreover, 

when a maximum itemset frequent is identified, its subsets 

do not have to be considered any more what reduces the 

number of itemsets generated candidates and thus the 

computing times CPU. The results of the experiments 

confirm the reduction of times of extraction of the frequent 

itemsets when an algorithm of extraction of the maximum 

frequent itemsets is used. They also show that the 

algorithm Max-Miner is overall more powerful than the 

algorithms To pincer-Search, MaxEclat and MaxClique in 

terms of execution time. 

The method used in the algorithm Pincer-Search generate 

two significant problems. The first is the determination, at 

the end of each iteration, of the itemsets maximum 

candidates containing of the infrequent itemsets which is a 

Np-difficult problem [ 2 ]. The second is the generation of 

the itemsets candidates of the following iteration which 

requires many tests of inclusions in the maximum frequent 

itemsets because of the suppression of the itemsets 

candidates which are maximum frequent subsets of these 

itemsets. These two problems, which require significant 

computing times CPU, involve in certain cases of the 

definitely higher response times for the algorithm Pincer-

Search compared to the algorithm Max-miner. 

The MaxEclat algorithm is subjected to the problem of the 

lack of precision of the itemsets maximum candidates that 

it uses. These candidates, who are generated by combining 

the identical frequent itemsets except for their last item, 

are supersets of the maximum frequent itemsets whose 

many items must be removed to obtain the maximum 

frequent itemsets. Consequently, the MaxEclat algorithm 

must carry out more iterations that the algorithms Max-

Miner and Pincer-Search to identify the maximum 

frequent itemsets. Each iteration corresponding to a 

swaping of the context and the calculation of the support 

of all the candidates, these iterations represent a 

considerable difference in the execution times. 

The MaxClique algorithm is subjected to a problem of 

performance due to the computing times necessary for the 

generation of the itemsets maximum candidates that it 

uses.It generates the click maximum graph whose tops are 

the frequent items and the arcs are the frequent k-itemsets. 

The itemsets resulting, which are supersets of the 

maximum frequent itemsets, are the itemsets maximum 

candidates used for the research top downwards. The 

problem of the enumeration of click maximum of a graph 

being a Np-difficult problem, the number of operations 



The 2006 International Arab Conference on Information Technology (ACIT'2006) 

 

 5

necessary to their generation is very significant and the 

response times of the algorithm are degraded considerably 

when the frequent itemsets (and thus click them) are long. 

The results of the experiments of comparison algorithm 

Max-Miner with the algorithms of extraction of the 

frequent itemsets show that it makes it possible to reduce 

times of extraction of the frequent itemsets in the case of 

values of µ high, i.e. if longest itemsets frequent maximum 

contains a significant number of items. The experiments of 

the algorithms Close and A-Closed also shows that these 

two algorithms reduce times of extraction of the frequent 

itemsets for such data files. However, the algorithm Max-

Miner requires a significant quantity of memory in order to 

store information concerning the candidates groups of each 

iteration. Moreover, this algorithm is subjected to the 

problem of the extraction of rules of association starting 

from dense and strongly correlated data related to the 

average size of the frequent itemsets which is high for the 

data files of this type. 

 

 

 

 

 

2.3. CLOSED FREQUENT ITEMSET (CF) 
 

Example : 

                                  
 

Let us consider the example above very simple 

compromise base. For a minimum support = 1, the process 

of extraction of the frequent itemsets generates 2
100

 -1 is 

nearly 10
30

 frequent itemsets, and consequently a very 

great number of rules of association. An alternative to the 

extraction of all the frequent itemsets was proposed by 

Pasquier and Al in [10].The idea consists in extracting a 

subset from itemsets frequent <closed> which constitutes 

<a minimal whole generating non redundant for all the 

frequent itemsets and their supports>. In other words, to 

extract a whole of itemsets frequent, known as closed, with 

their frequencies. These closed itemsets are an condensed 

representations of all the frequent itemsets. Thus, from 

closed, one can deduce the support from any frequent 

itemset without resorting to the course of the base of 

transactions. 

Intuitively, an itemset is known as to close if it does not 

have any superset with the same support. 

Thus in the example, only the itemsets which will be 

generated is the closed frequent itemset:{x1;x2;:::;x100} 

and {x1;x2;:::;x50} and only the rule of association:  

x1,x2…,x50 � x51,x52…,x100 will be produced. All the 

other possible rules can be easily derived starting from this 

rule. 

This approach not only makes it possible to improve the 

effectiveness of the extraction but also to reduce 

considerably the number of redundant rules which 

submerge the interesting rules. Three principal algorithms 

were proposed for the extraction of closed: Closed [ 10 ] 

A-closed [ 11 ], Charm [ 15 ], Closet [ 6 ] and Closet+ [ 7].                                                             

           
    

  

 

The algorithms Closet and Charm are similar in so far as 

they initially explore all the two frequent itemsets closed 

by an in-depth approach, with the difference that Closet is 

based on a tree (FP-TREE) which compresses the 

transactions of D. 

In addition, a concept similar to the closed reason called 

key reason was proposed by Bastide and Al in the 

algorithm Pascal [ 4 ], like by Boulicaut and Al in the Min-

Ex algorithm where it bears the free name of reason and a 

δ-free way more extent.    
 
Close, A-Close et Close+ [9] 

- During each iteration, the Close algorithm considers a 

whole of k-itemsets generating. It builds a whole of 

itemsets closed candidates who are closings of these k-

generators and it then determines among these candidates 

the frequent itemsets closed according to the minimal 

threshold of support minsupport. Finally, it creates to them 

(k+1)-generators which will be used at the time of the 

following iteration in order to build the whole of itemsets 

closed candidates who are closings of (the k+1)-generators 

a swaping of the context of extraction is necessary during 

each iteration, in order to determine closings of the K-

generators and to calculate their supports. 

- the algorithm A-Closed starts by determining the frequent 

generating 1-itemsets. Then, during each iteration K, it 

generates a whole of K-generators candidates starting from 

(the k-1)-itemsets generating frequent. It determines the 

supports of these k-itemsets generating candidates and 

removes the non minimal generators infréquents and 

generators which are identified according to their supports. 

When all the frequent generators are determined, their 

closings which constitute them itemsets closed frequent is 

given. During each iteration, a swaping of the context is 

carried out in order to calculate the support of the K-

generators candidates. An ultimate swaping of the context 

is then carried out at the time of the determination of 

closings of all the frequent generators. 

- the Close+ algorithm, makes it possible to determine the 

frequent itemsets closed among the whole of the frequent 

itemsets, without reaching the context of extraction. It 

makes it possible to extend a current implementation of 

extraction of the itemsets frequent, without having to 

modify it, in order to generate the frequent closed itemsets. 

The frequent k-itemsets which are frequent closed k-

itemsets are identified by comparing their supports with 

the supports of their (k+1)-on sets. 

This algorithm does not carry out swaping because it 

applies to the whole of the frequent itemsets and their 

already extracted supports. 

 

Closing of Item X  



The 2006 International Arab Conference on Information Technology (ACIT'2006) 

 

 6

Discussion  

Several algorithms of extraction of the sets closed starting 

from a finished binary relation were proposed in the 

literature. Among the latter, we can quote the algorithm of 

Bordat, the algorithm of Carpineto and the algorithm of 

Ganter implemented in ConImp which is most general 

since it makes it possible to calculate the closed sets some 

is the operator of the closing used and most effective 

among these three algorithms. However, these algorithms 

are not applicable in the context of the KDD because they 

make it possible to calculate the sets closed in reasonable 

times only for contexts of extraction comprising with more 

few tens of attributes (items) and a few hundreds of 

objects. The contexts of extraction of the KDD are made 

up for the majority of several hundreds to several 

thousands of attributes and several tens of thousands to 

several million objects. These algorithms requiring in best 

case as many swapings of the context of extraction than 

there are sets closed in the context, they cannot be used 

within the framework of the KDD. Moreover, they do not 

take into account the support of the itemsets in order to 

limit the space of research and determine all the closed 

itemsets of which a significant proportion have weak 

supports and are thus not significant for the applications of 

the KDD. The algorithms Aprem and Impec also make it 

possible to calculate the closed sets some is the operator of 

closing used and it was shown that these algorithms are 

more effective than the algorithm of Ganter in terms of 

applicability and execution time since it can be used for 

relations of more significant sizes. However these 

algorithms have summers developed within a framework 

other than the KDD in order to solve problems of nature 

different from those involved in the field of the KDD and 

their application to this field poses problems of 

performances. 

The methods used by the algorithms Close and A-Closed 

have several other significant advantages compared to the 

methods used by the algorithms of Bordat, Carpineto and 

Ganter. They make it possible on the one hand as far as 

possible to limit the number of swapings of the context 

necessary: the algorithms Close and A-Closed require a 

number of swapings equal to the size of largest of the 

generators of the frequent closed itemsets, increased by 

one for A-Closed. In addition, the generators being 

minimal within the meaning of inclusion and thus of the 

size, these two algorithms limit as much as possible the 

costs in time CPU of the operations on the itemsets, more 

particularly the tests of inclusions and the intersections, 

which depend directly on the size of the itemsets. 

The experiments show that in many cases the algorithms 

Close and A-Closed make it possible to decrease times of 

extraction of the frequent itemsets and, for the algorithm 

Close, the memory capacity necessary to the extraction 

what increases the field of application by it. This is more 

particularly true for the dense and/or correlated data which 

represent a significant share of the existing data bases. 

Moreover, the frequent closed itemsets make it possible to 

generate the whole of the valid rules of association or 

many bases for the valid rules of association.  

The problem of the determination of the approach and thus 

of the algorithm which will be most effective according to 

the data file used is complex. In the case of not correlated 

and scattered data, approach of the Apriori algorithm, i.e. 

the course of the lattice of the itemsets, makes it possible 

to obtain better response times. However, the extraction of 

the frequent itemsets starting from this type of data with 

the algorithms Closed and A-Closed, by the course of the 

lattice of the closed itemsets, gives acceptable response 

times. In the case of correlated and/or dense data, the 

Apriori algorithm gives response times very significant 

and quite higher than those of the algorithms Close and A-

Closed. The nature of the data which constitute the data 

file thus makes it possible to evaluate a priori the most 

effective algorithm, the properties of correlation and 

density of many types of data having been studied in the 

literature. Thus, it was established that the data of sales of 

supermarkets scattered and are slightly correlated bus in 

this type of data, the average number of items by objects is 

weak in front of the total number of items and each item is 

contained only in one small number of objects. It was also 

established that a significant proportion of the real data 

bases consist of correlated or dense data. They are the 

statistical and space data, the collections of texts and 

images, the histories of access Internet, etc. 

It is also possible to evaluate the effectiveness of the Close 

algorithms and A-Closed compared to the Apriori 

algorithm for a data file by determining the frequent 

proportion of 1-itemsets which is closed. This proportion 

constitutes an effective indicator of the proportion total of 

itemsets frequent which is closed and so almost all the 

frequent 1-itemsets are closed, it is probable that almost all 

the frequent itemsets are closed and thus calculations of 

closings realized by Close and A-Closed. 

 

 

3. LET US SUMMARIZE . . . 
The phase of extraction of the frequent itemsets remains an 

expensive phase in time and memory capacity and very 

often generates a very significant number of frequent 

itemsets. 

Instead of considering all the frequent reasons one can 

consider only the closed frequent reasons or the maximum 

frequent reasons whose principal algorithms were quoted 

higher in this paragraph. Also, we have the relation of 

following inclusion between the categories of frequent: 

 

                                    MF ⊆ CF ⊆ F 



The 2006 International Arab Conference on Information Technology (ACIT'2006) 

 

 7

                            

 
It is stressed that in the dense data bases, the number of 

itemsets closed and maximum is definitely lower than the 

number of itemsets, from where interest to consider only 

the itemsets closed or maximum during the generation of 

the rules of association. 

The figure shows the lattice of the itemsets for I={a;b;c;d}, 

closed and maximum frequent itemsets. Thus, we have 10 

frequent itemsets, 7 frequent closed and 3 maximum. 

 

4. FUTURE WORKS  
The results of this work presented in this article offer 

several prospects for later research at the theoretical level 

and the practical level. In this section, we briefly present 

some of these prospects which appear to us to be most 

interesting. 

 

Techniques of implementation and structures of data  

One can note during the implementations and the 

experiments of various algorithms that the structures of 

data and the techniques of implementation used have a 

particularly significant influence on the times execution 

and the memory capacity necessary to the execution of the 

algorithms. The study of the various techniques of 

implementation and the structures of data making it 

possible to improve the tasks of the extraction of 

knowledge in the data bases, according to their properties 

and of the properties of the various types of data, thus 

appears to us to be particularly significant for the 

resolution of the problems of the KDD. 

The preliminary results of this study suggest that the 

structures of the data most effective are the structures of 

bitmaps, with the simple bitmaps and the hierarchical 

bitmaps, as well as the tree structures, with the trees of 

chopping, the trees of prefixes and the trees ternary. 

 

Incremental maintenance of the whole of the frequent 

itemsets (F, MF, CF)  

The incremental maintenance of the whole of the frequent 

itemset consists of reflected updates of the data of the data 

base (addition of a new object, a new attribute or new 

values of the attributes) on this unit. This approach is 

particularly useful for all the tasks of the KDD which can 

be realized starting from this whole (extraction of rules of 

association and time series, clustering and supervised 

classification) in the case of applications requiring of the 

frequent executions of these tasks. Operators of 

construction and incremental maintenance of the frequent 

lattices of concept, to which operators of construction of 

clusters are applied, were established in the DBMS 

directed objects O2.The experimental results show that this 

approach poses problems of performances in the case of 

data files of big sizes and the development of an effective 

algorithm of incremental maintenance of the whole of the 

frequent closed itemsets constitutes an interesting prospect 

for later work. 

 

 

REFERENCES 

[1]     Agrawal Rakesh, Ramakrishnan Srikan 

          “ Fast Algorithms for Mining Association Rules 

”.   

         1994. 

[2]     Bayardo Jr Roberto J. 

         “Efficiently Mining Long Patterns From DataBases “  

         1998. 

[3]     Brin Sergey, Rajeev Motwani, Jeffrey D.Ullman,   

         Shalon Tsur. 

        “ Dynamic Itemset Counting and Implication Rules  

          for Market Basket Data.  “  1997 

[4]    Bastide Yves, Rafik Taouil, Nocolas Pasquier, Gerd   

         Stumme et Lotfi Lakhal 

         “ PASCAL : Un algorithme d’extraction des motifs  

         fréquents “ 

[5]    Han Jiawi, Jina Pei, Yiwen Yin, Runying Mao,  

        “ Mining Frequent Patterns without Candidate  

        Generation: A Frequent-Pattern Tree Approach “   

        2001 

[6]   Han Jiawi, Jina Pei et Runying Mao 

        “ CLOSET: An efficient Algorithm for mining  

        frequent closed itemsets “ 2000 

[7]    Jianyong Wang, Jiawei Han, Jian Pei 

        “ CLOSET+: Searching For The Best Strategies For  

        Mining Fréquent Closet Itemsets “  2003 

[8]   Lin Dao-I, Zvi M. Kedem 

       “ Pincer-Search: An Efficient Algorithm for  

        discovering the Maximum Fréquent Set “ July 1999. 

[9]   Nicolas Pasquier 

       “ Data Mining : Algorithmes d’extraction et réduction   

       des règles d’association dans les bases de données “ 

       Thesis of doctorate  January 2000 

[10]  Nicolas Pasquier, Yves Bastide, Rafik Taouil and   

         Lotfi Lakhal  

         “ Efficient Mining of association rules using closed  

         itemset lattices “ 

[11]  Nicolas Pasquier, Yves Bastide, Rafik Taouil and  

         Lotfi Lakhal  

        “Discovering Frequent Closed Itemsets for  

        Association Rules “ 

 

[12]   Savasere Ashok, Adward Omiecinski, Shamkan  

          Navathe. 

          “ An Efficient Algorithm for Mining association  

            Rules in Large Databases. “ 1995. 

[13]  Toivonen Hannu  

         “ Sampling Large databases for Association Rules “ 

[14]  Zaki .M. J. et Gouda (K.) 

Maximum Item 
 

Closed Item 



The 2006 International Arab Conference on Information Technology (ACIT'2006) 

 

 8

         “ Efficiently mining maximal frequent itemsets”  

            Novembre 2001  

[15]   Zaki Mohammed .J, Ching Jui Hsiao 

          “ Charm: An Efficient Algorithm For Closed Itemset  

             Mining “ 2002 

[16]:  Zaki Mohammed Javeed, Srinivasan Parthasarathy,  

          Mitsunori Ogihara and Wei Li 

         “ New Algorithms For Fast Discoverey of  

         Association Rules “ July 1997. 


