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ABSTRACT 

One of the key issues in the design of a distributed web 

server system (DWS) is determining the optimal 

number of replicas and their placement on the web 

servers. This paper presents a hybrid tabu search 

(HTS) algorithm for replica placement in a DWS 

environment. We model the object replication problem 

as a 0-1 optimization problem and specialize the tabu 

search into a specific algorithm for solving this 

problem by turning the abstract concepts of tabu 

search, such as initial solution, solution space, 

neighborhood, etc, into more concrete, problem 

specific and implementable definitions. In addition, we 

hybridize the tabu search algorithm with simulated 

annealing algorithm to speed up the convergence time 

of the algorithm without compromising the solution 

quality. Through a simulation study and comparison 

with well-known replica placement algorithms, we 

demonstrate the applicability and effectiveness of our 

hybrid algorithm.  
 

Keywords: Tabu Search, Simulated Annealing, 

    Object Replication, WWW, Distributed  

    Web-Servers, Data Replication 

 

1. INTRODUCTION 
As the usage of web services grows, the number of 

accesses to many popular web sites is ever increasing 

and occasionally reaches the limits of their capacity. As 

a consequence, end-users of these web sites often 

experience poor response time or denial of service 

(time-out error). For certain types of web applications 

(e.g. e-commerce), this could result in a sizeable 

revenue losses. Therefore, the system administrators of 

these sites are constantly faced with the need to scale up 

the site capacity to offer better service to their clients.  

To construct a powerful web server system, one 

could either use a powerful machine with advanced 

hardware support and optimized server software, or a 

collection of machines working together as a distributed 

web server system (DWS) [17]. The first approach is 

expensive one and the issue of scalability and 

performance may persist with ever increasing user 

demand. On the other hand, a DWS is not only cost 

effective and more robust against hardware failure but it 

is also easily scalable to meet increased traffic by 

adding additional servers when required. The 

performance of such systems (e.g. latency, throughput, 

availability, hop counts, link cost, and delay) can further 

be improved by maintaining multiple copies of objects 

at various locations [6,17]. Incoming requests are 

distributed to the web servers via switches or DNS 

servers [2]. Many popular web sites have already 

employed replicated server approach which reflects 

upon the popularity of this method [10].  

Choosing the right number of replicas and their 

locations is a non-trivial and non-intuitive exercise. It 

has been shown that deciding how many replicas to 

create and where to place them to meat a performance 

goal is an NP-hard problem [7,15]. Therefore, all the 

replica placement approaches proposed in the literature 

are heuristics that are designed for certain systems and 

work loads. 

There has been a number of studies on replication of 

Web contents. Wolfson et al. [16] proposed an adaptive 

data replication algorithm which can dynamically 

replicate an object to minimize the network traffic due 

to “read” and “write” operations. The proposed 

algorithm works on a logical tree structure and requires 

that communication traverses along the paths of the 

tree. It, however, does not consider the issue of multiple 

object replications. Furthermore, the performance of 

their algorithm for general network topology is not 

clear.  Bestavros [1] formulated the problem as a 

constraint-maximization problem and the solution was 

obtained using Lagrange multiplier theorem. However, 

the solution does not address the issue of selecting 

multiple locations through the network to do 

replication. Tenzakhti et al. [15] proposed two greedy 

algorithms, a static and a dynamic one, for replicating 

objects in a network of web servers arranged in a tree-

like structure. The static algorithm assumes that there is 

a central server that has a copy of each object and a 

central node determines the number and location of 

replicas to minimize a cost function. The dynamic 

version of the algorithm relies on the usage statistics 

collected at each server/site.  

Heddaya and Mirdad [4] presented a dynamic 

replication protocol for the web, referred to as the Web 

Wave. It is a distributed protocol that places cache 

copies of immutable documents on the routing tree that 

connects the cached documents home site to its clients, 

thus enabling requests to stumble on cache copies en 

route to the home site. This algorithm, however, 
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burdens the routers with the task of maintaining replica 

locations and interpreting requests for Web objects. 

Mahmood [12] proposed a series of algorithms for 

object replication in distributed web server systems. The 

author, however, considers the read requests only on a 

tree-like topology. Optimal placement of replica in trees 

has also been studied by Kalpakis at el. [6]. Due to 

successful application of meta-heuristics (e.g. genetic 

algorithm, tabu search etc.) to a variety of optimization 

problems, these algorithms have also been used to solve 

object replication problem. Sayal el al. [11] proposed 

selection algorithms for replicated Web sites, which 

allow clients to select one of the replicated sites which 

is close to them. However, they do not address the 

replica placement problem itself. A tabu search 

algorithm for object replication is proposed in [13].  

This paper extends the work presented by the authors 

in [13] and proposes a hybrid tabu search (HTS) 

algorithm for replica placement in a DWS environment. 

The major motivation behind proposing a HTS 

algorithm is the fact that various researchers have 

shown that tabu search, if applied intelligently, 

produces better quality results as compared to many 

traditional heuristics in solving a variety of optimization 

problems. In addition, we hybridize the tabu search 

algorithm with simulated annealing algorithm to speed 

up the convergence time of the algorithm without 

compromising the solution quality.  

 

2. THE SYSTEM MODEL 
A distributed Web server system consists of a number 

of sites interconnected by a communication network. A 

unit of data to be replicated is referred as an object. An 

object can be an XML/HTML page, an image file, a 

relation, etc. Each object is identified by a unique 

identifier and may be replicated on a number of sites. 

The objects are managed by a group of processes called 

replicas, executing at replica sites. We assume that the 

network topology can be represented by a graph G(V, 

E). Each node in the graph corresponds to a router, a 

switch or a web site. We assume that out of a total N 

nodes there are n web servers as the information 

provider. Associated with every node v ∈ V is a set of 
non-negative. This weight can represent the traffic 

traversing node v and going to web server i (i = 

1,2,…,n). The traffic includes the web access traffic 

generated at the local site that node v is responsible for 

and, also, the traffic that passes through it on its way to 

a target web server. Associated with every edge is a 

non-negative distance (which can be interpreted as 

latency, link cost, or hop count, etc.).  

A client initiates a read operation for an object k by 

sending a read request for object k. The request goes 

through a sequence of hosts via their attached routers to 

the server that can serve the request. The sequence of 

nodes that a read request goes through is called a 

routing path, denoted by π. The requests are routed up 
the tree to the home site (i.e. root of the tree). Note that 

a route from a client to a site forms a routing tree along 

which document requests must follow. Focusing on a 

particular sever i, the access traffic from all nodes 

leading to a server can be best represented by a tree 

structure if the transient routing loop is ignored [10]. 

Therefore, for each web server i, a spanning tree Ti, 

rooted at i, can be constructed. Hence, m spanning trees 

rooted at m web servers represent the entire network. 

The spanning tree Ti  rooted at a site i is formed by the 

clients that request objects from site i and the processors 

(clients) that are in the path π of the requests from 
clients to access object k at site i.  

 

2.1. OBJECT REPLICATION MODEL 
We consider a centralized object replication model in 

which there is a central site that decides on the number 

of replicas and their placement based on the statistics 

collected at each site. Upon determining the placement 

of replicas for each object, the central site re-configures 

the system by adding and/or removing replicas 

according to the new placement scheme. The location of 

each replica is broadcasted to all the sites. In addition, 

each site i keeps the following information: 
i

kLC : The least cost site to i that has a replica of  

            object k. 
ji

kC
,
: The cost of accessing object k at site i  

           from site j on π. 
ji

kf
, : The access frequency of object k at site i  

           from site j on π. 

kℵ : The set of sites that have a replica of 

         object k 

Each read request for an object is executed at only 

one of the replicas, the best replica. If kℵ  is the set of 

sites that have a replica of object k and 
i
kLCi

kC
,  denotes 

the cost of accessing object k at site i from the least cost 

site (denoted by i

kLC ), then 

iLC i

k = , if a replica of k is locally available at i 

, allover   minimum is  such that   ,

k

ji

k

i

k jCjLC ℵ∈=
    otherwise 

That is, for a given request for an object k at site i, if 

there is a local replica available, then the request is 

serviced locally incurring a cost ii

kC
, , otherwise the 

request is sent to site j having a replica of object k with 

the least access cost.  

 

2.2. THE COST MODEL 
Suppose that the vertices of G issue read requests for an 

object and copies of that object can be stored at multiple 

vertices of G. Let there be m objects to be replicated. 

Let ji

kf
,  be the number of read requests for a certain 

period of time t issued at site i for object k to site j on π.  

If X  is an n × m matrix whose entry 1=ikx  if object k 

is stored at site i and 0=ikx otherwise, then the cost of 



The 2006 International Arab Conference on Information Technology (ACIT'2006) 

 

 

serving requests for object k )1( mk ≤≤ at site i 
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Hence, the cumulative cost over the whole network 

for all the objects can be written as: 
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Now, the replica placement problem can be defined 

as a 0-1 decision problem to find X that minimizes (3) 
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If sk denotes size of object k and TSi is the total 

storage capacity of site i then the first constraint 

specifies that the total size of all the objects replicated at 

node i should not exceed its storage capacity. The 

second constraint specifies that the processing load 

brought by all the objects assigned at node i ( ikL  

denotes the processing load of object k at node i) should 

not exceed the total capacity of a node (denoted by iP ). 

 

3. THE ALGORITHM 
In this section, we specialize the basic tabu search [3] 

into a specific algorithm for the object replication 

problem described in section 2. This implies turning the 

abstract concepts of tabu search, such as initial solution, 

solution space, neighborhood, move generation, tabu 

criteria and others, into more concrete and 

implementable definitions.   

In standard tabu search algorithm [3], every non-

improving move is accepted if it is not tabued. This 

increases the solution search space and consequently 

tabu search may take longer time to produce a solution 

Therefore, to reduce the solution search space and 

improve the efficiency of the proposed algorithm, we 

accept a non-improving move with a probability which 

is a function of temperature, the best objective function 

value found so far and the new value of the objective 

function after the move is applied to the current solution 

(an idea borrowed from simulated annealing [5]).  

The core of the proposed hybrid tabu search 

algorithm for object replication is given in Figure 1. 

The input parameters to the algorithm are the number of 

objects (input parameter no_of_objects), number of 
servers in the network (no_of_servers), the network 
topology (topology), maximum number of successful 

moves the algorithm makes before terminating 

(maxmoves) and initial value of temperature (input 
parameter temperature).  The final output of the 

algorithm is an array of residence sets (a residence set 

Rk contains the server IDs on which object k is to be 

replicated).   

The tabu_search() makes use of other routines to 
perform the changes in the solution space (these are 

select_site,get_neighborhoodsize,select_neighbor
hood, select_object, select_best_move and 

apply_move), the evaluation of a solution (using 
compute_cost), updating checking whether a non-
improving move should be accepted (using isvalid), 
updating the tabu list (using update_history), rejecting 
a move (using undo_move) and generating initial 
solution and initializing tabu list (using initial_solution 
and init_history respectively). A detail description of 
these routines is given in the following sections. We 

also use two arrays N and R of sets that store the current 

location of all the objects (called the residence set) and 

objects that are allocated to a specific node, 

respectively. The algorithm terminates when either the 

maximum number of iterations has been completed or 

maximum allowed moves (controlled with variable 

maxmoves) have been made. The algorithm may also 
be terminated if no successful move has been made for 

last n iterations (n maybe a user supplied parameter). 

It is important to correctly define the parameters of 

the algorithm and to implement it as efficiently as 

possible to reduce the overall complexity and 

computation time. In the following sections, we 

describe how the important routines can be 

implemented. 

 

3.1. INITIAL SOLUTION 
The routine init_solution() uses a greedy algorithm to 
get the initial solution. It proceeds as follows: For each 

object k whose storage and processing requirements are 

less than the storage and processing capacity of site 1, 

calculate the profit (in terms of cost function) of putting 

a copy of object k on site 1. Sort the objects in 

descending order of their profits. Starting with object 1 

in the sorted list, replicate objects one by one on site i 

until  all the objects are replicated or there is no more 

capacity at site i to hold any other object.  Repeat the 

same procedure for remaining m-1 sites. Note that this 

method ensures that the initial solution satisfies the 

storage and load constraints (e.g. constraint 1 and 2) and 

hence is a feasible solution. 
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residence_set  tabu_search(no_of_objects, no_of_servers, topology,maxmoves,temperature) 
{ 

object_set N[n];       //N[i] is set of objects assigned at site i 
residence_set R[m];    //R[i] is a set of nodes at which object i  is assigned 
 
initial_solution(R,N,no_of_objects, no_of_sites);  //initial allocation 
init_history(history);       //initialize history 
cost_value=compute_cost(R)      //compute cost of residence set 
best_value=cost_value;              // used by aspiration criterion 
best_residence_set=R;   //residence set found so far 
nmoves=0;       //moves made so far 
naccepted=0;   //no of non-imrpoving moves accepted so far 
for(i=1; i<=maxtry; i++) {  // maxtry > maxmoves 

siteinstance=select_site(no_of_servers);  //select a site 
neigh_size=get_neighborhoodsize(n,topology); 
 
//select the neighborhood set of the selected site 
neighborhood=select_ neighborhood(topology,siteinstance,neigh_size); 
object_instance=select_object(no_of_objects);  //a random object 
best_move=select_best_move(no_of_objects, neighborhood, N[siteinstance], R) 
 apply_move(best_move,R); 
update(N,R)  //update N w.r.t. new R 
new_cost=compute_cost(R);   delta=new_cost-best_value; 
if (delta < 0 and feasible(R) )   //aspiration criteria 
{ 

nmoves++; 
update_history(history,best_move.move); 
best_residence_set=R;  best_value = new_cost 

} 
else { 

valid=isvalid(delta,temperature); // acceptance criteria of simulated annealing  
if (valid and feasible(R)) {  //conditionally accept the move 

nmoves++; naccepted++ 
update_history(history,best_move.move); 

} else { undo_move(best_move,R); undo_object_set(best_move,N); }    
if (nmoves > maxmoves)  break; 
if (naccepted >=MAXCHANGE) { 

temperature *=alpha;   //update temperature 
naccpeted=0; 

} 
} //for 
return best_residence_set; 

} 

Figure 1: The core of hybrid tabu search object allocation and replication  

 

move_struct select_best_move(n, neighbourhood, N, R) 
{ 

//* n is randomly selected node,  N is set of objects assigned to node n,  R is the array of residence set 
move_struct is struct that contain move and profit as its attributes */ 
 
best_move.profit=0; 
for (each p in neighborhood) { 

profit=evaluate_move(N,transfer,i,n,p); 
if (profit > best_move.profit and move is valid)  

{ best_move.profit=profit; best_move.move=(transfer,i,n,p); } 
profit=evaluate_move(replicate,i,n,p); 
if (profit > best_move.profit and move is valid)  

 { best_move.profit=profit; best_move.move=(transfer,i,n,p); } 
} //for 
o=select_node_not_in(N); profit=evaluate_move(add,o,n); 
if (profit > best_move.profit and move is valid) { 

best_move.profit=profit; 
best_move.move=(transfer,i,n,p); 

} 
return best_move; 

} 

Figure 2: Algorithm to select the best move 
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3.2. MOVE GENERATION 
For our replication algorithm, set of possible solutions 

consists of all possible permutations of the objects 

subject to the constraints. To generate a new allocation, 

it is possible to move an object from one site to another 

site (object migration) or put an additional copy of the 

object on  a node (object replication).  

The proposed algorithm generates a new move in 

four steps. First, select_site() routine randomly selects 
a site. Then find_neighborhood() finds a subset of 
sites from the given network topology that should be 

considered for object replication and migration. Then 

the routine select_best_move() selects the best valid 
move in the neighborhood set (see Figure 2). The 

routine considers the following moves: 

1. (migrate,object,n,neighborhood) – That is, 

migrating an object from site n to another site 

in the neighborhood. 

2. (replication,object,n,neighborhood) – That is, 

replicating an object already residing on site n 

to another site in the neighborhood. 

3. (add,object,n) – That is, adding an object not 

currently replicated at site n. 

The best move selected by the routine is applied to 

the current solution to obtain the new solution by 

calling routine apply_move(). 
 

3.3. TABU LISTS 
The chief mechanism for exploiting memory in tabu 

search is to classify a subset of moves in the 

neighborhood as forbidden (tabu). This classification 

depends on the history of the search, particularly 

manifested in the recency or frequency that certain 

moves or solution components have participated in 

generating past solutions. We use the following tabu 

criteria to make certain moves tabu. 

 

3.3.1 RECENCY TABU 
There are three kinds of moves in our algorithm as 

explained before. The first one is (migrate, object,n,m) 

and has a reverse move expressed as 

(migrate,object,m,n). The second move is (replicate, 

object,n,m) with a reverse move (replicate, object,m,n). 

The last move is (add,object,n) and has a reverse move 

(migrate,object,n,m). A move is prohibited (or is tabu) 

if its reverse has been executed recently. Unlike 

standard tabu search in which the value of tabu tenure is 

fixed, we determine the tabu tenure of a move through a 

feedback (reactive) mechanism during the search. The 

tabu tenure of a move is equal to one at the beginning 

(the inverse move is prohibited only at the next 

iteration), and it increases only when there is evidence 

that diversification is needed, and it decreases when this 

evidence disappears. In detail, the evidence that 

diversification is needed is signaled by the repetition of 

previously visited configurations. All configurations 

found during the last I iterations of the search are stored 

in memory (use of a queue is a possible implementation 

strategy). After a move is executed, the algorithm 

checks whether the current configuration has already 

been found and it reacts accordingly (tabu tenure of the 

move increases if a configuration is repeated, it 

decreases if no repetition occurred during a sufficiently 

long period).  

 

3.3.2. SAME COST VALUE 
This is a powerful tabu to diversify the search when 

stuck in local optima. This tabu is triggered if the same 

value of the cost function has been obtained during last 

c iterations, where c is specified by the user. When this 

tabu is switched on, all solutions with a cost value equal 

to the cost value selected during that period are tabued. 

The user can also specify the tenure of this tabu.  

 

3.4. ASPIRATION CRITERION 
The aspiration criterion allows overriding a tabu move 

under certain conditions. The proposed algorithm 

overrides a tabu restriction if the move leads to a 

solution better than the best found so far. This is the 

only aspiration criterion used by the proposed 

algorithm. 

 

3.5.  ACCEPTANCE OF NON- 

       IMPROVING MOVES AND 

      CONTROL PARAMETER T 
The standard tabu search algorithm generates a move 

and accepts it even if it is a non-improving one 

(provided it is not tabu). However, accepting moves 

which are far from the current best solution may make 

the algorithm to evaluate many inferior solutions 

resulting in high number of moves before producing 

any solution. In contrast to the tabu search algorithm, 

simulated annealing (SA) algorithm [9] selects a non-

improving solution with a probability that is a function 

of temperature and function values for the best solution 

found so far and the new solution obtained after the 

move. 

The probability is generally computed following the 

Boltzmann distribution. That is, if CC(Xbest) is the 

function value of the best solution found so far and 

CC(Xnew) is the function value of the new solution 

obtained by applying the best move, then probability of 

accepting a non-improving move (p) is given by: 
Tep /∆−=                  (8) 

Where 

)(( ) newbest XCCXCC −=∆                (9) 

The temperature T is decreased during the search 

process, thus at the beginning of the search the 

probability of accepting uphill moves is high and it is 

gradually decreased to a simple iterative improvement 

method.  The choice of an appropriate cooling schedule 

is crucial to the performance of the algorithm. The 

cooling schedule defines the value of Tk at each iteration 

k (or after a number of iterations). One of the most 

commonly used cooling schedule follows a geometric 

law: Tk+1=αTk, where α ∈ (0,1), which corresponds to 
an exponential decay of the temperature. In our 

algorithm, we use α = 0.9/0.95 as proposed in [8].  
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The proposed algorithm accepts a maximum number 

of non-improving moves (proportional to the dimension 

of the problem) for each value Tk of the control 

parameter. We have chosen to limit the number 

MAXCHANGE of moves that are accepted for a 

particular value of Tk before it is lowered proportionally 

to Tk according to the formula Tk+1=αTk. 
It is particularly important that T0, the starting value 

of T, be sufficiently large to allow almost all non-

improving move be accepted at the start of process and 

then lowering it down in such a way that almost no non-

improving move is accepted towards the end of the 

process. A simple way of empirically selecting the 

starting temperature is to initially sample the search 

space with a random walk to roughly evaluate the 

average and the variance of the objective function 

values [5]. 

 

4. EXPERIMENTAL RESULTS 

This section presents some performance measures 
obtained by simulation of the proposed algorithm. In 

each simulation run, we model the web as a tree having 

100-600 nodes. The total objects to be replicated were 

2000 in all the simulation runs. The average object size 

was taken as 10 KB and maximum size was taken as 

100KB and follow the pareto distribution. The storage 

capacity of a server was set randomly in such a way that 

total storage of all the servers was enough to hold at 

least one copy of each object at one of the servers. In 

each trial, we run the replica placement algorithms for 

200,000 requests for different objects.  

During a simulation run, latencies are calculated as 

described in [15] Exponential service time is assumed 

with an average service rate of 100 transactions/second. 

At the end of every 20,000 requests, the mean latency of 

all the requests is calculated and used as a performance 

measure. The number of iterations was fixed from 5000 

to 50000 depending on the problem size. The number of 

successful moves when the algorithm was forced to 

terminate was fixed at 1/2 of the total number of 

iterations. The minimum neighborhood size was taken 

equal to or more than the number of sites directly 

connected to a site whose neighborhood is to be 

searched. The starting temperature was selected using a 

random walk in the solution space of different 

problems.  

We studied the performance of our proposed 

algorithm and compared it with that of random 

allocation algorithm [14], greedy algorithm [15] and hot 

spot [14]. Figure 3 shows the average latency for all the 

simulation runs for different tree sizes. The figure 

shows that the average latency decreases for all the 

algorithms as the number of sites increases in the 

system. This is because of the fact that as the number of 

sites increases, more replica of an object can be placed. 

Also, note that the performance of the proposed 

algorithm is better than other three algorithms 

demonstrating the effectiveness of the proposed 

algorithm. Figure 4 shows the average performance of 

the algorithms for all the system configurations. It is 

evident that the proposed algorithm performs, on 

average, better than the greedy, random algorithm and 

hot spot.  

We also studied the effect of change in the access 

frequencies. The access frequencies for objects were 

changed by -20% to 50%. Each algorithm was run again 

to find the new replication schemes and percentage 

savings in the cost function. The results are shown in 

figure 5 and figure 6. It is evident from the results that 

the proposed algorithm adjusted the replication schemes 

better than all the other algorithms.    

We also compared the proposed hybrid tabu search 

with the standard tabu search algorithm. We observed 

that the hybrid algorithm was able to find better or same 

quality solution in almost all the cases. In about 68% 

cases, the standard tabu search was able to find the 

solutions of the same quality as that of hybrid algorithm 

after making, on an average of 19.3%, extra moves as 

compared to the hybrid algorithm. This show the 

effectiveness of hybridizing the tabu search with 

simulated annealing algorithm. 

We also studied the convergence of the proposed 

algorithm by starting with different initial solutions. 

The simulation results showed that in more than 95.8% 

of cases, the proposed algorithm was able to find 

(sub)optimal solutions. This shows that the proposed 

algorithm converges to the (sub)optimal solution 

regardless of the quality of the initial solution. 

However, when the proposed algorithm for generating 

initial solution was used to obtain the starting solution, 

the hybrid tabu search found the (sub)optimal solutions, 

in almost 39% cases, with fewer number of moves. This 

justifies the use of a good starting solution.  

We also studied the effect of neighborhood size on 

the accuracy of the proposed algorithm. The simulation 

results show that as the neighborhood size increases, the 

algorithm finds better or same quality solutions in less 

number of moves. The worst performance was observed 

when a single move is randomly generated in the 

neighborhood of the current solution. When a best move 

is selected by evaluating all the moves of an object in 

the neighborhood containing all the nodes directly 

connected to the selected node, (sub)optimal solutions 

were obtained in less number of moves. Increasing the 

size of the neighborhood further did not show any 

significant improvement in the solution quality. 
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Figure 3: Mean latency for different tree sizes 
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Figure 5: Average improvement 
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Figure 6: Average improvement for all runs 

 

6.  CONCLUSIONS 
Object replication in a distributed web server system is 

a promising technique to achieving better performance. 

In this paper, we modeled the object replication as a 0-1 

optimization problem. Then a hybrid tabu search 

algorithm is proposed to obtain solution to this problem. 

A detailed description of the proposed algorithm and its 

implementation considerations are discussed. The 

proposed algorithm has been compared with three other 

algorithms through a simulation study. A comparison of 

the proposed algorithm demonstrates the superiority of 

the proposed algorithm.  
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