
The 2006 International Arab Conference on Information Technology (ACIT'2006)

Object Replication in Distributed Web Server Systems

with a Hybrid Tabu Search Algorithm

Amjad Mahmood and Taher, S. K. Homeed

Faculty of Information Technology, University of Bahrain, Kingdom of Bahrain

amahmood@itc.uob.bh, tskhomeeed@itc.uob.bh

ABSTRACT

One of the key issues in the design of a distributed web

server system (DWS) is determining the optimal

number of replicas and their placement on the web

servers. This paper presents a hybrid tabu search

(HTS) algorithm for replica placement in a DWS

environment. We model the object replication problem

as a 0-1 optimization problem and specialize the tabu

search into a specific algorithm for solving this

problem by turning the abstract concepts of tabu

search, such as initial solution, solution space,

neighborhood, etc, into more concrete, problem

specific and implementable definitions. In addition, we

hybridize the tabu search algorithm with simulated

annealing algorithm to speed up the convergence time

of the algorithm without compromising the solution

quality. Through a simulation study and comparison

with well-known replica placement algorithms, we

demonstrate the applicability and effectiveness of our

hybrid algorithm.

Keywords: Tabu Search, Simulated Annealing,

 Object Replication, WWW, Distributed

 Web-Servers, Data Replication

1. INTRODUCTION
As the usage of web services grows, the number of

accesses to many popular web sites is ever increasing

and occasionally reaches the limits of their capacity. As

a consequence, end-users of these web sites often

experience poor response time or denial of service

(time-out error). For certain types of web applications

(e.g. e-commerce), this could result in a sizeable

revenue losses. Therefore, the system administrators of

these sites are constantly faced with the need to scale up

the site capacity to offer better service to their clients.

To construct a powerful web server system, one

could either use a powerful machine with advanced

hardware support and optimized server software, or a

collection of machines working together as a distributed

web server system (DWS) [17]. The first approach is

expensive one and the issue of scalability and

performance may persist with ever increasing user

demand. On the other hand, a DWS is not only cost

effective and more robust against hardware failure but it

is also easily scalable to meet increased traffic by

adding additional servers when required. The

performance of such systems (e.g. latency, throughput,

availability, hop counts, link cost, and delay) can further

be improved by maintaining multiple copies of objects

at various locations [6,17]. Incoming requests are

distributed to the web servers via switches or DNS

servers [2]. Many popular web sites have already

employed replicated server approach which reflects

upon the popularity of this method [10].

Choosing the right number of replicas and their

locations is a non-trivial and non-intuitive exercise. It

has been shown that deciding how many replicas to

create and where to place them to meat a performance

goal is an NP-hard problem [7,15]. Therefore, all the

replica placement approaches proposed in the literature

are heuristics that are designed for certain systems and

work loads.

There has been a number of studies on replication of

Web contents. Wolfson et al. [16] proposed an adaptive

data replication algorithm which can dynamically

replicate an object to minimize the network traffic due

to “read” and “write” operations. The proposed

algorithm works on a logical tree structure and requires

that communication traverses along the paths of the

tree. It, however, does not consider the issue of multiple

object replications. Furthermore, the performance of

their algorithm for general network topology is not

clear. Bestavros [1] formulated the problem as a

constraint-maximization problem and the solution was

obtained using Lagrange multiplier theorem. However,

the solution does not address the issue of selecting

multiple locations through the network to do

replication. Tenzakhti et al. [15] proposed two greedy

algorithms, a static and a dynamic one, for replicating

objects in a network of web servers arranged in a tree-

like structure. The static algorithm assumes that there is

a central server that has a copy of each object and a

central node determines the number and location of

replicas to minimize a cost function. The dynamic

version of the algorithm relies on the usage statistics

collected at each server/site.

Heddaya and Mirdad [4] presented a dynamic

replication protocol for the web, referred to as the Web

Wave. It is a distributed protocol that places cache

copies of immutable documents on the routing tree that

connects the cached documents home site to its clients,

thus enabling requests to stumble on cache copies en

route to the home site. This algorithm, however,

The 2006 International Arab Conference on Information Technology (ACIT'2006)

burdens the routers with the task of maintaining replica

locations and interpreting requests for Web objects.

Mahmood [12] proposed a series of algorithms for

object replication in distributed web server systems. The

author, however, considers the read requests only on a

tree-like topology. Optimal placement of replica in trees

has also been studied by Kalpakis at el. [6]. Due to

successful application of meta-heuristics (e.g. genetic

algorithm, tabu search etc.) to a variety of optimization

problems, these algorithms have also been used to solve

object replication problem. Sayal el al. [11] proposed

selection algorithms for replicated Web sites, which

allow clients to select one of the replicated sites which

is close to them. However, they do not address the

replica placement problem itself. A tabu search

algorithm for object replication is proposed in [13].

This paper extends the work presented by the authors

in [13] and proposes a hybrid tabu search (HTS)

algorithm for replica placement in a DWS environment.

The major motivation behind proposing a HTS

algorithm is the fact that various researchers have

shown that tabu search, if applied intelligently,

produces better quality results as compared to many

traditional heuristics in solving a variety of optimization

problems. In addition, we hybridize the tabu search

algorithm with simulated annealing algorithm to speed

up the convergence time of the algorithm without

compromising the solution quality.

2. THE SYSTEM MODEL
A distributed Web server system consists of a number

of sites interconnected by a communication network. A

unit of data to be replicated is referred as an object. An

object can be an XML/HTML page, an image file, a

relation, etc. Each object is identified by a unique

identifier and may be replicated on a number of sites.

The objects are managed by a group of processes called

replicas, executing at replica sites. We assume that the

network topology can be represented by a graph G(V,

E). Each node in the graph corresponds to a router, a

switch or a web site. We assume that out of a total N

nodes there are n web servers as the information

provider. Associated with every node v ∈ V is a set of
non-negative. This weight can represent the traffic

traversing node v and going to web server i (i =

1,2,…,n). The traffic includes the web access traffic

generated at the local site that node v is responsible for

and, also, the traffic that passes through it on its way to

a target web server. Associated with every edge is a

non-negative distance (which can be interpreted as

latency, link cost, or hop count, etc.).

A client initiates a read operation for an object k by

sending a read request for object k. The request goes

through a sequence of hosts via their attached routers to

the server that can serve the request. The sequence of

nodes that a read request goes through is called a

routing path, denoted by π. The requests are routed up
the tree to the home site (i.e. root of the tree). Note that

a route from a client to a site forms a routing tree along

which document requests must follow. Focusing on a

particular sever i, the access traffic from all nodes

leading to a server can be best represented by a tree

structure if the transient routing loop is ignored [10].

Therefore, for each web server i, a spanning tree Ti,

rooted at i, can be constructed. Hence, m spanning trees

rooted at m web servers represent the entire network.

The spanning tree Ti rooted at a site i is formed by the

clients that request objects from site i and the processors

(clients) that are in the path π of the requests from
clients to access object k at site i.

2.1. OBJECT REPLICATION MODEL
We consider a centralized object replication model in

which there is a central site that decides on the number

of replicas and their placement based on the statistics

collected at each site. Upon determining the placement

of replicas for each object, the central site re-configures

the system by adding and/or removing replicas

according to the new placement scheme. The location of

each replica is broadcasted to all the sites. In addition,

each site i keeps the following information:
i

kLC : The least cost site to i that has a replica of

 object k.
ji

kC
,
: The cost of accessing object k at site i

 from site j on π.
ji

kf
, : The access frequency of object k at site i

 from site j on π.

kℵ : The set of sites that have a replica of

 object k

Each read request for an object is executed at only

one of the replicas, the best replica. If kℵ is the set of

sites that have a replica of object k and
i
kLCi

kC
, denotes

the cost of accessing object k at site i from the least cost

site (denoted by i

kLC), then

iLC i

k = , if a replica of k is locally available at i

, allover minimum is such that ,

k

ji

k

i

k jCjLC ℵ∈=
 otherwise

That is, for a given request for an object k at site i, if

there is a local replica available, then the request is

serviced locally incurring a cost ii

kC
, , otherwise the

request is sent to site j having a replica of object k with

the least access cost.

2.2. THE COST MODEL
Suppose that the vertices of G issue read requests for an

object and copies of that object can be stored at multiple

vertices of G. Let there be m objects to be replicated.

Let ji

kf
, be the number of read requests for a certain

period of time t issued at site i for object k to site j on π.

If X is an n × m matrix whose entry 1=ikx if object k

is stored at site i and 0=ikx otherwise, then the cost of

The 2006 International Arab Conference on Information Technology (ACIT'2006)

serving requests for object k)1(mk ≤≤ at site i

)1(ni ≤≤ is given by:

ii

k

ii

kik

LCi

k

LCi

kik

i

k CfxCfxTC
i
k

i
k ,,,,

)1(+−= (1)

The cost of serving requests for all the objects at site

i is:

 []∑∑
=

=

=

=

+−==
mk

k

ii

k

ii

kik

LCi

k

LCi

kik

mk

k

i

k CfxCfxTCTC
i
k

i
k

1

,,,,

1

)1((2)

Hence, the cumulative cost over the whole network

for all the objects can be written as:

 ∑∑ ∑
= =

+−=

n

i

m

k

ii

k

ii

kik

LC

LCi

k

LCi

kik CfxCfxXCC
i
k

i
k

i
k

1 1

,,,,
)1()((3)

Now, the replica placement problem can be defined

as a 0-1 decision problem to find X that minimizes (3)

under certain constraints. That is, we want to

∑∑
∑

= =

+

−
=

n

i

m

k ii

k

ii

kik

LC

LCi

k

LCi

kik

Cfx

Cfx

XCC i
k

i
k

i
k

1 1 ,,

,,
)1(

min)(minimize

 (4)

Subject to

miTSsx
m

k

ikik ≤≤≤∑
=

1 allfor
1

 (5)

niPLx iik

m

k

ik ≤≤<∑
=

1 allfor .
1

 (6)

kixik , allfor },1,0{∈ (7)

If sk denotes size of object k and TSi is the total

storage capacity of site i then the first constraint

specifies that the total size of all the objects replicated at

node i should not exceed its storage capacity. The

second constraint specifies that the processing load

brought by all the objects assigned at node i (ikL

denotes the processing load of object k at node i) should

not exceed the total capacity of a node (denoted by iP).

3. THE ALGORITHM
In this section, we specialize the basic tabu search [3]

into a specific algorithm for the object replication

problem described in section 2. This implies turning the

abstract concepts of tabu search, such as initial solution,

solution space, neighborhood, move generation, tabu

criteria and others, into more concrete and

implementable definitions.

In standard tabu search algorithm [3], every non-

improving move is accepted if it is not tabued. This

increases the solution search space and consequently

tabu search may take longer time to produce a solution

Therefore, to reduce the solution search space and

improve the efficiency of the proposed algorithm, we

accept a non-improving move with a probability which

is a function of temperature, the best objective function

value found so far and the new value of the objective

function after the move is applied to the current solution

(an idea borrowed from simulated annealing [5]).

The core of the proposed hybrid tabu search

algorithm for object replication is given in Figure 1.

The input parameters to the algorithm are the number of

objects (input parameter no_of_objects), number of
servers in the network (no_of_servers), the network
topology (topology), maximum number of successful

moves the algorithm makes before terminating

(maxmoves) and initial value of temperature (input
parameter temperature). The final output of the

algorithm is an array of residence sets (a residence set

Rk contains the server IDs on which object k is to be

replicated).

The tabu_search() makes use of other routines to
perform the changes in the solution space (these are

select_site,get_neighborhoodsize,select_neighbor
hood, select_object, select_best_move and

apply_move), the evaluation of a solution (using
compute_cost), updating checking whether a non-
improving move should be accepted (using isvalid),
updating the tabu list (using update_history), rejecting
a move (using undo_move) and generating initial
solution and initializing tabu list (using initial_solution
and init_history respectively). A detail description of
these routines is given in the following sections. We

also use two arrays N and R of sets that store the current

location of all the objects (called the residence set) and

objects that are allocated to a specific node,

respectively. The algorithm terminates when either the

maximum number of iterations has been completed or

maximum allowed moves (controlled with variable

maxmoves) have been made. The algorithm may also
be terminated if no successful move has been made for

last n iterations (n maybe a user supplied parameter).

It is important to correctly define the parameters of

the algorithm and to implement it as efficiently as

possible to reduce the overall complexity and

computation time. In the following sections, we

describe how the important routines can be

implemented.

3.1. INITIAL SOLUTION
The routine init_solution() uses a greedy algorithm to
get the initial solution. It proceeds as follows: For each

object k whose storage and processing requirements are

less than the storage and processing capacity of site 1,

calculate the profit (in terms of cost function) of putting

a copy of object k on site 1. Sort the objects in

descending order of their profits. Starting with object 1

in the sorted list, replicate objects one by one on site i

until all the objects are replicated or there is no more

capacity at site i to hold any other object. Repeat the

same procedure for remaining m-1 sites. Note that this

method ensures that the initial solution satisfies the

storage and load constraints (e.g. constraint 1 and 2) and

hence is a feasible solution.

The 2006 International Arab Conference on Information Technology (ACIT'2006)

residence_set tabu_search(no_of_objects, no_of_servers, topology,maxmoves,temperature)
{

object_set N[n]; //N[i] is set of objects assigned at site i
residence_set R[m]; //R[i] is a set of nodes at which object i is assigned

initial_solution(R,N,no_of_objects, no_of_sites); //initial allocation
init_history(history); //initialize history
cost_value=compute_cost(R) //compute cost of residence set
best_value=cost_value; // used by aspiration criterion
best_residence_set=R; //residence set found so far
nmoves=0; //moves made so far
naccepted=0; //no of non-imrpoving moves accepted so far
for(i=1; i<=maxtry; i++) { // maxtry > maxmoves

siteinstance=select_site(no_of_servers); //select a site
neigh_size=get_neighborhoodsize(n,topology);

//select the neighborhood set of the selected site
neighborhood=select_ neighborhood(topology,siteinstance,neigh_size);
object_instance=select_object(no_of_objects); //a random object
best_move=select_best_move(no_of_objects, neighborhood, N[siteinstance], R)
 apply_move(best_move,R);
update(N,R) //update N w.r.t. new R
new_cost=compute_cost(R); delta=new_cost-best_value;
if (delta < 0 and feasible(R)) //aspiration criteria
{

nmoves++;
update_history(history,best_move.move);
best_residence_set=R; best_value = new_cost

}
else {

valid=isvalid(delta,temperature); // acceptance criteria of simulated annealing
if (valid and feasible(R)) { //conditionally accept the move

nmoves++; naccepted++
update_history(history,best_move.move);

} else { undo_move(best_move,R); undo_object_set(best_move,N); }
if (nmoves > maxmoves) break;
if (naccepted >=MAXCHANGE) {

temperature *=alpha; //update temperature
naccpeted=0;

}
} //for
return best_residence_set;

}

Figure 1: The core of hybrid tabu search object allocation and replication

move_struct select_best_move(n, neighbourhood, N, R)
{

//* n is randomly selected node, N is set of objects assigned to node n, R is the array of residence set
move_struct is struct that contain move and profit as its attributes */

best_move.profit=0;
for (each p in neighborhood) {

profit=evaluate_move(N,transfer,i,n,p);
if (profit > best_move.profit and move is valid)

{ best_move.profit=profit; best_move.move=(transfer,i,n,p); }
profit=evaluate_move(replicate,i,n,p);
if (profit > best_move.profit and move is valid)

 { best_move.profit=profit; best_move.move=(transfer,i,n,p); }
} //for
o=select_node_not_in(N); profit=evaluate_move(add,o,n);
if (profit > best_move.profit and move is valid) {

best_move.profit=profit;
best_move.move=(transfer,i,n,p);

}
return best_move;

}

Figure 2: Algorithm to select the best move

The 2006 International Arab Conference on Information Technology (ACIT'2006)

3.2. MOVE GENERATION
For our replication algorithm, set of possible solutions

consists of all possible permutations of the objects

subject to the constraints. To generate a new allocation,

it is possible to move an object from one site to another

site (object migration) or put an additional copy of the

object on a node (object replication).

The proposed algorithm generates a new move in

four steps. First, select_site() routine randomly selects
a site. Then find_neighborhood() finds a subset of
sites from the given network topology that should be

considered for object replication and migration. Then

the routine select_best_move() selects the best valid
move in the neighborhood set (see Figure 2). The

routine considers the following moves:

1. (migrate,object,n,neighborhood) – That is,

migrating an object from site n to another site

in the neighborhood.

2. (replication,object,n,neighborhood) – That is,

replicating an object already residing on site n

to another site in the neighborhood.

3. (add,object,n) – That is, adding an object not

currently replicated at site n.

The best move selected by the routine is applied to

the current solution to obtain the new solution by

calling routine apply_move().

3.3. TABU LISTS
The chief mechanism for exploiting memory in tabu

search is to classify a subset of moves in the

neighborhood as forbidden (tabu). This classification

depends on the history of the search, particularly

manifested in the recency or frequency that certain

moves or solution components have participated in

generating past solutions. We use the following tabu

criteria to make certain moves tabu.

3.3.1 RECENCY TABU
There are three kinds of moves in our algorithm as

explained before. The first one is (migrate, object,n,m)

and has a reverse move expressed as

(migrate,object,m,n). The second move is (replicate,

object,n,m) with a reverse move (replicate, object,m,n).

The last move is (add,object,n) and has a reverse move

(migrate,object,n,m). A move is prohibited (or is tabu)

if its reverse has been executed recently. Unlike

standard tabu search in which the value of tabu tenure is

fixed, we determine the tabu tenure of a move through a

feedback (reactive) mechanism during the search. The

tabu tenure of a move is equal to one at the beginning

(the inverse move is prohibited only at the next

iteration), and it increases only when there is evidence

that diversification is needed, and it decreases when this

evidence disappears. In detail, the evidence that

diversification is needed is signaled by the repetition of

previously visited configurations. All configurations

found during the last I iterations of the search are stored

in memory (use of a queue is a possible implementation

strategy). After a move is executed, the algorithm

checks whether the current configuration has already

been found and it reacts accordingly (tabu tenure of the

move increases if a configuration is repeated, it

decreases if no repetition occurred during a sufficiently

long period).

3.3.2. SAME COST VALUE
This is a powerful tabu to diversify the search when

stuck in local optima. This tabu is triggered if the same

value of the cost function has been obtained during last

c iterations, where c is specified by the user. When this

tabu is switched on, all solutions with a cost value equal

to the cost value selected during that period are tabued.

The user can also specify the tenure of this tabu.

3.4. ASPIRATION CRITERION
The aspiration criterion allows overriding a tabu move

under certain conditions. The proposed algorithm

overrides a tabu restriction if the move leads to a

solution better than the best found so far. This is the

only aspiration criterion used by the proposed

algorithm.

3.5. ACCEPTANCE OF NON-

 IMPROVING MOVES AND

 CONTROL PARAMETER T
The standard tabu search algorithm generates a move

and accepts it even if it is a non-improving one

(provided it is not tabu). However, accepting moves

which are far from the current best solution may make

the algorithm to evaluate many inferior solutions

resulting in high number of moves before producing

any solution. In contrast to the tabu search algorithm,

simulated annealing (SA) algorithm [9] selects a non-

improving solution with a probability that is a function

of temperature and function values for the best solution

found so far and the new solution obtained after the

move.

The probability is generally computed following the

Boltzmann distribution. That is, if CC(Xbest) is the

function value of the best solution found so far and

CC(Xnew) is the function value of the new solution

obtained by applying the best move, then probability of

accepting a non-improving move (p) is given by:
Tep /∆−= (8)

Where

)(() newbest XCCXCC −=∆ (9)

The temperature T is decreased during the search

process, thus at the beginning of the search the

probability of accepting uphill moves is high and it is

gradually decreased to a simple iterative improvement

method. The choice of an appropriate cooling schedule

is crucial to the performance of the algorithm. The

cooling schedule defines the value of Tk at each iteration

k (or after a number of iterations). One of the most

commonly used cooling schedule follows a geometric

law: Tk+1=αTk, where α ∈ (0,1), which corresponds to
an exponential decay of the temperature. In our

algorithm, we use α = 0.9/0.95 as proposed in [8].

The 2006 International Arab Conference on Information Technology (ACIT'2006)

The proposed algorithm accepts a maximum number

of non-improving moves (proportional to the dimension

of the problem) for each value Tk of the control

parameter. We have chosen to limit the number

MAXCHANGE of moves that are accepted for a

particular value of Tk before it is lowered proportionally

to Tk according to the formula Tk+1=αTk.
It is particularly important that T0, the starting value

of T, be sufficiently large to allow almost all non-

improving move be accepted at the start of process and

then lowering it down in such a way that almost no non-

improving move is accepted towards the end of the

process. A simple way of empirically selecting the

starting temperature is to initially sample the search

space with a random walk to roughly evaluate the

average and the variance of the objective function

values [5].

4. EXPERIMENTAL RESULTS

This section presents some performance measures
obtained by simulation of the proposed algorithm. In

each simulation run, we model the web as a tree having

100-600 nodes. The total objects to be replicated were

2000 in all the simulation runs. The average object size

was taken as 10 KB and maximum size was taken as

100KB and follow the pareto distribution. The storage

capacity of a server was set randomly in such a way that

total storage of all the servers was enough to hold at

least one copy of each object at one of the servers. In

each trial, we run the replica placement algorithms for

200,000 requests for different objects.

During a simulation run, latencies are calculated as

described in [15] Exponential service time is assumed

with an average service rate of 100 transactions/second.

At the end of every 20,000 requests, the mean latency of

all the requests is calculated and used as a performance

measure. The number of iterations was fixed from 5000

to 50000 depending on the problem size. The number of

successful moves when the algorithm was forced to

terminate was fixed at 1/2 of the total number of

iterations. The minimum neighborhood size was taken

equal to or more than the number of sites directly

connected to a site whose neighborhood is to be

searched. The starting temperature was selected using a

random walk in the solution space of different

problems.

We studied the performance of our proposed

algorithm and compared it with that of random

allocation algorithm [14], greedy algorithm [15] and hot

spot [14]. Figure 3 shows the average latency for all the

simulation runs for different tree sizes. The figure

shows that the average latency decreases for all the

algorithms as the number of sites increases in the

system. This is because of the fact that as the number of

sites increases, more replica of an object can be placed.

Also, note that the performance of the proposed

algorithm is better than other three algorithms

demonstrating the effectiveness of the proposed

algorithm. Figure 4 shows the average performance of

the algorithms for all the system configurations. It is

evident that the proposed algorithm performs, on

average, better than the greedy, random algorithm and

hot spot.

We also studied the effect of change in the access

frequencies. The access frequencies for objects were

changed by -20% to 50%. Each algorithm was run again

to find the new replication schemes and percentage

savings in the cost function. The results are shown in

figure 5 and figure 6. It is evident from the results that

the proposed algorithm adjusted the replication schemes

better than all the other algorithms.

We also compared the proposed hybrid tabu search

with the standard tabu search algorithm. We observed

that the hybrid algorithm was able to find better or same

quality solution in almost all the cases. In about 68%

cases, the standard tabu search was able to find the

solutions of the same quality as that of hybrid algorithm

after making, on an average of 19.3%, extra moves as

compared to the hybrid algorithm. This show the

effectiveness of hybridizing the tabu search with

simulated annealing algorithm.

We also studied the convergence of the proposed

algorithm by starting with different initial solutions.

The simulation results showed that in more than 95.8%

of cases, the proposed algorithm was able to find

(sub)optimal solutions. This shows that the proposed

algorithm converges to the (sub)optimal solution

regardless of the quality of the initial solution.

However, when the proposed algorithm for generating

initial solution was used to obtain the starting solution,

the hybrid tabu search found the (sub)optimal solutions,

in almost 39% cases, with fewer number of moves. This

justifies the use of a good starting solution.

We also studied the effect of neighborhood size on

the accuracy of the proposed algorithm. The simulation

results show that as the neighborhood size increases, the

algorithm finds better or same quality solutions in less

number of moves. The worst performance was observed

when a single move is randomly generated in the

neighborhood of the current solution. When a best move

is selected by evaluating all the moves of an object in

the neighborhood containing all the nodes directly

connected to the selected node, (sub)optimal solutions

were obtained in less number of moves. Increasing the

size of the neighborhood further did not show any

significant improvement in the solution quality.

100

150

200

250

300

350

400

450

500

550

100 200 300 400 500 600

of sites

A
v
e
ra
g
e
 l
a
te
n
c
y

Hybrid tabu search Greedy Random Hot spot

Figure 3: Mean latency for different tree sizes

The 2006 International Arab Conference on Information Technology (ACIT'2006)

0

50

100

150

200

250

300

350

400

450

Hybrid tabu

search

Greedy Random Hot Spot

Algorithm

A
v
e
ra
g
e
 l
a
te
n
c
y

Figure: Average latency for all simulation runs

0

10

20

30

40

50

60

100 200 300 400 500 600

of sites

A
v
e
ra
g
e
 l
a
te
n
c
y
 i
m
p
ro
v
e
m
e
n
t

Hybrid tabu seach Greedy Random Hot spot

Figure 5: Average improvement

0

5

10

15

20

25

30

35

40

Hybrid tabu

search

Greedy Random Hot spot

Algorithm

A
v
e
ra
g
e
 l
a
te
n
c
y
 i
m
p
ro
v
e
m
e
n
t

Figure 6: Average improvement for all runs

6. CONCLUSIONS
Object replication in a distributed web server system is

a promising technique to achieving better performance.

In this paper, we modeled the object replication as a 0-1

optimization problem. Then a hybrid tabu search

algorithm is proposed to obtain solution to this problem.

A detailed description of the proposed algorithm and its

implementation considerations are discussed. The

proposed algorithm has been compared with three other

algorithms through a simulation study. A comparison of

the proposed algorithm demonstrates the superiority of

the proposed algorithm.

REFERENCES
[1] Bestavros, A., “Demand-Based Document

Dissemination to Reduce Traffic and Balance

Load in Distributed Information Systems,” Proc.

IEEE Symp. On Parallel and Distributed

Processing, pp. 338-345, 1995.

[2] Colajanni, M., Yu, P. S., “Analysis of Task
Assignment Policies in Scalable Distributed Web

Server Systems,” IEEE Trans. On Parallel and

Distributed Systems, vol. 9, pp. 585-600, 1988.

[3] Glover, F., “Tabu Search: a Tutorial”, Interfaces,
vol. 20, no. 1, pp. 74-94, 1990.

[4] Heddaya, A. and Mirdad, S., “Web Wave:
Globally Load Balanced Fully Distributed Caching

of Hot Published Documents,” Proc. 17th IEEE

int. Conf. On Distributed Computing Systems, pp.

160-168, 1997.

[5] Ingber, L., “Adaptive Simulated Annealing

(ASA): Lessons Learned,” J. Control and

Cybernetics, vol. 25, pp. 33-54, 1996.

[6] Kalpakis, K., Dasgupta, K. and Wolfson, O.,
“Optimal Placement of Replicas in Trees with

Read, Write and Storage Costs,” IEEE Trans. On

Parallel and Distributed Systems, vol. 12, pp. 628-

637, 2001.

[7] Karlsson, M. and Karamanolis, C., “Choosing
replica Placement Heuristics for Wide-Area

Systems”, International Conference on Distributed

Computing Systems, available at http://www.

hpl.hp.com/personal/Magnus_Karlssn, 2004.

[8] Kirkpatrick, S. and Gellat, C. D., “Optimization by
Simulated Annealing: Quantitative Studies,” J.

Statistics of Physics, vol. 34, pp. 975-986, .1984.

[9] Kirkpatrick, S., Gellat, C. D., and Vechhi, M. P.,
“Optimization by Simulated Annealing,” Science,

Vol. 220, pp. 671-680, 1983.

[10] Li, B., “Content Replication in A Distributed and
Controlled Environment,” J. of Parallel and

Distributed Computing, vol. 59, pp. 229-251,

1999.

[11] Sayal, M., Breitbart, Y., Scheurermann. P. and
Vingralek, R., “Selection of Algorithms for

Replicated Web Sites,” Performance Evaluation

Review, vol. 26, No. 1, pp. 44-50, 1998.

[12] Mahmood, A., “Object Replication Algorithms for
World Wide Web,” Computing and Informatics,

vol. 24, no. 4, pp. 371-390, 2005.

[13] Mahmood, A., “A Tabu Search Algorithm for
Object Replication in Distributed Web Server

Systems,” Studies in Informatics and Control, vol.

14, no. 2, pp 85-98, 2005.

[14] Qiu, L., Padmanabham, V. N. and Voelker, G. M.,
“On the Placement of Web Server Replicas,” Proc.

of 20th IEEE INFOCOM, Anchorage, USA, pp.

1587-1596, 2001.

[15] Tenzakhti, F., Day, K. and Olud-Khaoua, M.,
“Replication Algorithms for the Word-Wide

Web,” J. of System Architecture, vol. 50, pp. 591-

605, 2004.

[16] Wolfson, O., Jajodia, S. and Huang, Y., “An
Adaptive Data Replication Algorithm,” ACM

Trans. Database Systems, vol. 22, no. 2, pp. 255-

314, 1997.

[17] Zhuo, L., Wang, C-L. and Lau, F. C. M.,
“Document Replication and Distribution in

Extensible Geographically Distributed Web

Servers,” J. of Parallel and Distributed

Computing, vol. 63, pp. 927-944, 2003.

