
The 2006 International Arab Conference on Information Technology (ACIT'2006)

Parallel Execution of an Irregular Algorithm Depth First Search (DFS)

On Heterogeneous Clusters of Workstation

Mohammed. A. M. Ibrahim

Faculty of Engineering &Information Technology

Taiz University
Republic of Yemen, Taiz, P.O. Box: 6038

Sabri1966@yahoo.com

Abstract

This paper presents a status report on our efforts and

experiences with heterogeneous clusters of workstation

based on dynamic load balancing for parallel tree

computation depth-first-search (DFS) project at the

High Performance Computing laboratory in Shanghai

Jiaotong University. We describe an implementation of

one parallel search algorithm DFS, running under the

MPI message passing interface and Solaris operating

system on heterogeneous workstation clusters. The

main goal of this paper is to demonstrate the speed

gained by the heterogeneous workstation clusters

platform computing to solve large search problem,

distribute the tree search space among the processors

and show through a parallel simulation application, the

maturity of the more recent technologies. We have run

the parallelizm and distribution of the search space of

the DFS algorithm among the processors successfully

found that the critical issue in parallel DFS algorithm is

the distribution of the search space among the

processors. First experimental results of parallel DFS

are given for tests that will serve as a starting point for

further development of our project. We are presenting

our preliminary progress here, and we expect in the

near future to demonstrate a real dynamic load

balancing for DFS algorithm running on heterogeneous

clusters of workstation computing platform resulting in

a good load balance among all the processors.

Keywords: heterogeneous clusters of workstation,

parallel tree computation DFS, dynamic load balancing

strategy, parallel performance.

1. Introduction

Depth-first search (DFS) is among the most popular

techniques for finding a solution in a state space tree

(or graph) containing one or more solutions. Many

applications in Operations Research, Artificial

Intelligence and other areas in Computing Science use

DFS as a basic solution method [1,2,3,4]. Because

these problems are computationally intensive, the

design of efficient parallel algorithms is of prime

importance. The main goal of this paper is to describe

the implementation of parallel search algorithm (DFS)

and demonstrate the speedup gained by the

heterogeneous clusters of workstation platform

computing. A major advantage of the depth-first search

strategy is that it requires very little memory. Since

many of the problems solved by DFS are highly

computation intensive, there has been a great interest in

developing a parallel version of depth-first search.

Most of these papers in [5,6,7,8] use DFS

implementation on shared memory, which is differ

from our purpose and environment in this paper. In the

following, we introduce the parallel DFS and present

the performance result obtained on heterogeneous

clusters of workstation

2. Parallel depth-first search

An investigated on the running parallel program of

DFS shows that, the state space spawned by a depth-

first search can be partitioned into smaller parts (sub

trees) for simultaneous exploration by different

processors. Once the sub trees have been distributed

among the processors, little communication is

necessary for broadcasting improved bound values and

solutions for termination detection DFS [10,11,12,13].

In practice, DFS trees tend to be highly irregular, that

is, they exhibit varying branching degrees and the DFS

is generated dynamically during runtime in a way that

is unpredictable in general. Static tree partitioning is

insufficient to keep all processors busy, dynamic load

balancing method are required to map the workload

onto the network, minimizing processor idle times and

amount of communication. The main aspects in this

paper are the parallelism and distribution of the search

space among the processors since the late, is the critical

issue in parallel depth-first search algorithm.

3. Implementation approach to parallel (DFS)

The 2006 International Arab Conference on Information Technology (ACIT'2006)

DFS has been implemented on heterogeneous clusters

of workstation by partitioning the search space into sub

trees that are searched in parallel. Each processor

searches a disjoint sub tree in depth-first fashion, which

can be done asynchronously without any

communication. When a processor has finished its

work, it tries to get an unsearched sub tree from

another processor. When a goal node is found, all of

them quit. Efficient workload balancing is important to

keep all processors busy. In the near future we are

going to implement dynamic load balancing strategy to

balance the workload of parallel DFS among the

processors. Our idea of dynamic load balancing came

from running our parallel program for DFS application

on heterogeneous clusters of workstation. We noted

that the computation of the DFS algorithm evolves in

idealized manner that is, a consistent increase, followed

by a consistent decrease into the total workload by

DFS. Hence we can divide the computation into

distinct phases with each phase having different load

balancing requirement and objective view of the

workload in tree computation. Execution of tree

application typically produces a workload, which

evolves from one phase to another, in order to identify

the phases in the application. We supposed that DFS

application is executed on P processors at time t. Since

the computation starts with the root task it is possible to

identify three main workload phases in the DFS

computation. Figure 1 shows the 3 phases of

computation workload.

 w

 Transition 1 Transition 2

P

 1

 Phase1 Phase2 Phase3

0 t

 Figure 1: 3 phases workload

 t: is execution time. P: processors number. w:

workload or tasks

(1) Phase 1: during this phase the machine cannot be

fully utilized, since w <P.

(2) Phase 2: When w>= p there is enough workload

for all processors potential to be busy-unbalanced

growth of the computation tree meaning: some

processors become idle while there is still a large

amount of work to be done.

Phase3: Eventually the workload becomes so low

that it is not possible to use all processors; as in the

phase1 w <p.

• Transitions

As defined in Figure 1, there are 3 phases workload

(tasks). Hence we can identify two-transition points:

The first transition marks the phase change from phase

1 to phase 2, while the second transition, between

phase 2 and phase3. So both transitions 1 and 2 are

detected when the number of tasks reaches the total

number of processors; that is when w<= P for

transition 1 and w<= P for transition 2.

The basic parallelization pseudo code of the DFS is

given in Figure 2.

Var visited Boolean initial false

Status [v] init unsearched (*for each neighbor*/

Start the algorithm

 Visited: =true;

 For number of w in neighbor do

 Begin send [dfs] to w;

 Status [w]: = cal end

 Upon receipt of [dfs] from v:

 if not visited then

 Begin

 Visited: = true;

 Status [v]: = father end;

 if status[v] = unused then

 Begin send [dfs] to v ; status[v] := ret end

 else

 if there is a w with status[w] = unused then

 Begin

 send [dfs] to w ;

 status[w] := cal end

 else

 if there is a w with status[w] = father then

 begin

 Send [dfs] to w end

else stop

Figure 2 DFS parallelization pseudo code

4. Application

The 8-puzzle problem consists of 3*3, a typical

application consisting of eight squared tiles, located in

a squared tray of size 3*3 with one empty square. A tile

can be moved into the blank position from a position

adjacent to it, thus creating a blank in the tiles’ original

position. Depending on the configuration of the grid,

The 2006 International Arab Conference on Information Technology (ACIT'2006)

up to four moves are possible: up, down, left, and right.

The initial and final configurations of the tiles are

specified. The objective is to determine a shortest

sequence of moves that transforms the initial

configurations to the final configuration. We used an 8-

puzzle to keep the search space reasonable and the 8-

puzle can be naturally formatted as a graph search

problem.

5. Hard-and software

As parallelization software, the MPI (Message Passing

Interface) the MPI implementation MPICH [15] has

been used. This library is a successor to PVM and runs

on a large number of different platforms, including

Linux PC, standard workstations or even Cray

supercomputers. With this library, it is possible to run a

program in parallel even on heterogeneous clusters of

workstation. The simulation was carried out on

heterogeneous clusters of workstation, which consists

of the machines listed in the table 1. The performance

measurement has been made using the five Solaris

machines.

Machine

type

CPU OS

SUN Ultra

Enterprise

SUN UltraSPARC-

II(450MHz)

Solaris 2.6

SGI O2 R5000 (180MHz) Solaris 2.6

2 SUN

Ultra30

SUN UltraSPARC-

II(248MHz)

Solaris 2.6

SUN Ultra

Enterprise

SUN UltraSPARC-

II(296MHz)

Solaris 2.6

Table 1 heterogeneous clusters of workstation

Machines List

6. Experimental Results

Our program written in c language was running on

heterogeneous clusters of workstation table 1 shows the

machines characteristics, all they are interconnected by

high-speed data links, Solaris operating system has

been chosen and using MPI as an application interface

layer. The computation starts with single node (root

task). The tasks are dynamically generated and

consumed through expansion; hence multiple tasks can

be executed in parallel processing on heterogeneous

clusters of workstation. Our measure of performance

relates to the execution time and is measure of how

much faster the program runs on the parallel machine

than it doses on a serial machine Figure 3 shows the

improvement of the execution time on a small number

of processors can decrease Significantly as the.

Table 2 Execution time in second

1 2 3 4 5

0

1

2

3

4

5

6

7

8

E
x
ec
u
ti
o
n
 T
im

e

Number of Processors

Figure 3 Execution time (sec)

number of reception message increases, the number

of messages sent per processor has small impact on the

simulation times. In order to make the parallel

execution more apparent, we inserted some delay in

each search step. We first initialized a job to each

processor, and time was measure for all the processors.

From Figure 3 we note that as the number of processor

increases, the execution time decreases. Up to three

processors, the sharp fall in the execution time

indicates the advantage we achieve from parallel

execution. One important point to be noted from the

Number of

Processors

Execution

Time

1 7.57809

2 2.89275

3 1.12081

4 0.65507

5 0.56545

The 2006 International Arab Conference on Information Technology (ACIT'2006)

curve Figure 3 is that adding further processors beyond

three do not improve the execution speed significantly

due to the communication overhead. To enhance the

performance, we introduced dynamic load balancing in

the pervious section, as a promising technique for

improvement of performance in such platform

computing. Future work will focus on dynamic load

balancing on heterogeneous clusters of workstation, but

we have no doubt that this kind of architecture is very

promising because of its excellent performance/price

ratio.

7. Conclusions and future work

 We have presented a very efficient parallel

algorithm DFS for solving 8-puzzle problem,

implemented on a serious alternative (heterogeneous

clusters of workstation) to expansive parallel

computers using MPI (message passing interface) the

method is efficient and allows a good distribution of

work to the processors. The over all goal of this work

to explore the parallelism for the DFS and demonstrate

the speedup gained by heterogeneous clusters of

workstation parallel platform computing to solve large

search problem. The result in Figure 3 shows the

achievement in these regards. Generalizing the use of

parallel DFS makes parallel solutions usable for wider

range applications that exhibit tree characteristics.

Future work will deal with the build of dynamic load

balancing direct to the tree computation (DFS)

application. We argued that, since the dynamic load

balancing integrated within DFS application, there is a

potential to optimize for DFS application, the potential

way in which dynamic load balancing for DFS may be

improved by taking into the account particular

characteristics of DFS; specifically when the execution

of DFS generate a workload phases detected at the run

time when the dynamic load balancing strategy with

different objectives is applicable in every phase and

termination detection algorism which will works as

back ground to the dynamic load balancing strategy

also applicable in every phase.

8. References

[1] J.E. Boillat. Load balancing and Poisson equation

in a Graph. Concurrency: practice and experience,

2(4): 289-313, December 90.

[2] S. Arvindam, V. Kumar, V. Rao. Efficient parallel

algorithms for searching problems: Applications in

VLSI CAD.3
rd
 symp.1990,166-169.

[3] A.Reinefeld and V. Schnecke. AIDA* -

Asynchronous parallel IDA*. 10
th
 Canadian conf. On

art.intel. AI94, (may 1994), Banff, Canada.

 [4] R. E. Korf. Depth_ first iterative-deepening: An

optimal admissible tree search. Artifical intelligence,

27:97-109, 1985.

[5 Bernard Nadel. Tree search and arc consistency in

constraint satisfaction algorithms. In L. N. Kanal and

Vipin Kumar, editors, search in artificial intelligence,

pages 287-342. Springer-Verlarg, New York, NY,

1988.

[6] V. Kumar, P. s. Gopalakrishnan, and L. N. Kanal.

Parallel algorithm for machine intelligence and vision.

Springer-Verlge, 1990.

[7] M.C. Wikstrom, J.L. Gustafson, and G.M. Prabhu.

A threshold test for dynamic load balancing. In

international conference on parallel processing, pages

II268-II269, 1991

[8] A.L. Cheung and A.P. Reeves. High performance

computing on a cluster of workstation. Proc. of the

1
st
.int.symposium on September 1992.

[9] M.ciermiak, W. Li, and M.J.Zaki.loop scheduling

for heterogeneity. In 4
th
 IEEE Int. symposium on high

performance distributed computing, also as URCS-TR

540 CS dept. Univ. of Rochester, August 1995

[10] C.D. Polychronopoulos. Parallel programming and

compilers. Kluwer Academic publishers, 1988.

[11] A.S. Grimshaw, J. B. weissman, E.A.West, and

E.C. Loyot. Metasystem: an approach combining

parallel processing and heterogeneous distributed

computing systems. Journal of parallel and distributed

computing, 21(3): 257-270,1992

[12] Per H. Andersen and John K. Antonio

Implementation and utilization of a heterogeneous

Multicomputer cluster for the study of load balancing

strategies IEEE 1998.

[13] Anna Brunstrom, Rahul simha. Dynamic vs. static

load balancing in pipeline computation technical

report the department of computer science college of

William and Mary VA 23185.

[14] G. Tel, Topics in Distributed Algorithms, and

Cambridge International Series in Parallel

Computation: 1, Cambridge University Press, 1991.

[15] MPI home http://www.mcs.anl.gov:80/mpi/.

