
The 2006 International Arab Conference on Information Technology (ACIT'2006)

The metrics for Complexity to Quality of a system by UML

Shahid Nazir Bhatti and Gerhard Chroust

Faculty of Systems Engineering and Automation, Johannes Kepler University Linz, A - 4040 Linz, Austria

snb@sea.uni-linz.ac.at, gc@sea.uni-linz.ac.at

ABSTRACT

The aspects of quality are that it is something

unquantifiable trait- it can be discussed, felt and

judged, but can not be weighted or measured. To

validate software systems early in the development

lifecycle is becoming crucial. Early validation of

functional requirements is supported by well known

approaches, while the validation of non-functional

requirements, such as complexity or reliability, is not.

Early assessment of non-functional requirements can be

facilitated by automated transformation of software

models into (mathematical) notations suitable for

validation. These types of validation approaches are

usually as -transparent to the developers as possible.

The widely acceptance of quality services will only be

accepted by users if their quality is of the most

acceptable level. UML is rapidly becoming a standard

(both in development and in research environments) for

software development. The work here in this paper is

extension of Quality with UML (QWUML, IDIMT-2004,

and SEN-2005), quality of the system measurements

with modeling (UML). This paper discusses some

important issues regarding system design modeling in

association with quality, complexity, and design aspects

using UML heuristics.

Keywords: UML Unified Modeling Language, QWUML

Quality with UML, DB Database, KAS Number of key

attributes, DRC Depth of Relationship between classes,

IRA Inter-relational attributes, IRM and Inter-

relational methods.

1. INTRODUCTION
The increasing demand for software and its

proliferation, bringing it into contact with more and

more people creates a major demand for high quality

software and as a consequence for skilled software

engineers, managers and quality specialists and

appropriate tools and methods. Quality is gaining more

and more importance in the software world, especially

in view of quality software’s development with

international standards [13]. The application of software

metrics has proven to be an effective technique for

improving the software quality and productivity. The

some of aspects about quality, software metrics is

discussed in detail in section 2 and section 3. The term

‘quality’ is used internationally to describe a

comprehensive process which ensures and demonstrates

the quality of the products and services it produces

because quality is a journey which has milestones rather

than a destination. It has to be noticed that software

organizations invest some how 80% their development

resources related to their ‘products quality’1 [7].

UML is widely accepted as the standard for

representing the various software artifacts generated a

software development processes. Visual modeling

through UML provides effective traits, on one hand

generating a suitable Analysis/ Design graphical view

for the system development, beside generating suitable

code for different main technologies (like, Oracle,

Visual c, Visual Basic, Java etc). The important aspect

is while working quality with UML. The non

functionality requirements like complexity to quality

addressed with graphical representation, i.e. using UML

to the system design. We have used schema mapping to

effectively display the effect of complexity in the

interrelated UML diagrams to relational database report

in section 4. In UML we have used here use case

diagram and class diagram for modeling the system

design aspects to database (Oracle 8i) and vice versa

(reverse engineering aspects i.e. Class Diagrams

generation from Oracle code). Further illustrating: -the

effect of complexity with UML diagrams and data and

information redundancy with respect to UML as well as

database in Section 4 of this paper.

2. SOFTWARE QUALITY ISSUES
2.1. QUALITY
‘The totality of features and characteristics of a product

or service to that bear on its ability to meet stated or

implied requirements’. Quality is critical for survival

and success, the market for software is increasingly a

global one and no organization will succeed in that

market unless they not produces quality products and

services. If any one does not do so then that

organization may not even survive [8].

2.2. WHY SYSTEM FAILS
When a system fails, the failure may be the result of any

of several reasons as indicated in the figure: 1, and can

be accumulated in the following manners:

� The specification may be wrong or have missing

requirements. The specification may not state

exactly what the customer wants or needs.

� The specifications may contain a requirement that

is too complicated to implement, given the

prescribed hardware and software scenarios.

1 Some detail material about Quality, Software Quality, Quality with

ISO/ IEC Standards-Product Quality aspects etc, [ACM-SEN Mar -
2005 Shahid Nazir Bhatti].

The 2006 International Arab Conference on Information Technology (ACIT'2006)

� The system design may contain a fault. Perhaps the

database and query-language designs make it

impossible to authorize users.

� The program design may contain a fault. The

component descriptions may contain as access

control algorithm that does not handle this case

correctly.

� The program code may be wrong. It may implement

the algorithm improperly or incompletely.

Figure 1: Causes of faults during development [10].

Faults can be inserted into a requirement, design, or

code component, or in the documentation, at any point

during maintenance. Figure 1 illustrates the likely

causes of faults in each development activity. Although

we would like to find and correct faults as early as

possible, system testing acknowledges that faults may

still be present after integration testing.

A ‘baseline audit’ can be carried out to

measure current practice against the requirements of the

ISO/IEC 9126 standards, the audit in fact examines the

organization’s activities under various software quality

metrics, software quality metrics framework defines a

‘software quality metric’ as a quantitative measure of an

attribute that describe the quality of a software product

or process. Test procedures should be enough to

exercise system functions to every body’s satisfaction:

user, customer, and developer.

In previous work2, detail material available

about quality toward software product (ISO/ IEC 9126),

term ‘Design Quality’ and also issues regarding

‘Quality with UML i.e. QWUML’. Importantly this

work is related to ISO/ IEC 9126 and 25000. With the

graphical representation of the characteristics and sub

characteristics of these software metrics, also these

2 Detail work about Quality with UML-QWUML , Functionality

Metric working with UML available in [Shahid Nazir Bhatti, IDIMT-
2004]

aspects are more detail illustration to ‘product quality’.

As the characteristics from ISO/ IEC 25000

Functionality, Usability, Reliability, and Maintainability

etc depicted in detail about the quality of the software

end product but there is very little information about the

issues related to the complexity about the software

process or hence effects related to software products. In

next section, we have highlighted some important issues

regarding software complexity, software complexity

toward the issues regarding system development.

2.3. SOFTWARE COMPLEXITY TO

SOFTWARE QUALITY
“software engineering is the field of computer science

that deals with the building of software systems that are

so large or so complex that they are build by a team or

teams of engineers” [10]. With ISO-Standards there is

very little information available about the term

‘complexity’ with external metrics characteristics.

Although, almost all the existing attributes and sub

attributes of these external metrics are influenced either

directly or indirectly by this key factor. Some of the

classical complexity measures with internal as well as

external complexity of modules are shown below in

table 1:

Measured by Categories

Halstead: [1977] Internal-code-based

McCabe: [1976] Internal-code-based

Shepperd: [1991] External

Chidamber &

Kemerer: [1993]

Method per class-

Internal

Henry & Kafura:

[1981]

Hybrid-code-based

Table 1: Some Classical Complexity Measures [13].

From table, hybrid category to complexity measure is

important factor, as complexity measure of any module

and segment is combination of both internal and

external complexity. In the past, software was

monolithic and procedural in nature e.g. a typical

COBOL program of the past was a single entity with

subroutines called as required; the logic of program was

sequential and predictable.

The examples of the complex systems are control

systems in process plant, medical electronics, aircraft

controls, machine tool control, nuclear plant and

weapon systems. The consequences of failure under

these circumstances are often severe and thus attract

particular attention. It leads to two more difficulties

� Due to the complexity of software failure modes

the possibility of total failure (system) is greater

� Since the use of software makes fault difficult to

predict it is difficult to perceive if the integrity of a

system is adequate.

The 2006 International Arab Conference on Information Technology (ACIT'2006)

Modern systems are distributed (as it can reside on

many computer nodes) and its execution is complex.

The size of software is the sum of the sizes of its

modules (components). Each component is designed to

be of limited manageable size. As a result the size (lines

of code) is not factor in the difficulty level is inflated by

the fact that these (or any) modules are frequently

developed and managed by people and teams not even

known to each other [10]. This creates a network of

intercommunicating objects. In relationship,

dependencies, responsibilities, roles created within

domains and randomly introduction of new domains

and sharing of objects within different teams. The issue

of software complexity can be enlightened as the fact

that any object in one working domain (schema) can

communicate with any object in another domain creates

potential dependencies (relationship) between all

objects in the current system.

3. SOFTWARE QUALITY METRICS
Metrics are generally defined as, “quantitative methods”

and “they can be used to measure the periodic changes”.

The application of software metrics has proven to be an

effective technique for estimating, assessing and

improving software quality and productivity [9] i.e. the

initiation of a software metrics program will provide

assistance to assessing, monitoring and identifying

improvement actions for achieving quality goals

regarding ISO/IEC 9126 Standard [5]. Software metrics

are of interest for several reasons [12]:

� Quantitative measures can be used as indicators of

a software product or development process. These

indicators, such as size, product, quality, process

quality etc, are of interest to software development

mangers, developers, and users.

� The software metrics may indicate suggestions for

improving the software development process.

Figure 2: Software Quality Metrics Framework.

Regarding the requirements for software’s quality

issues, the software quality metrics framework

introduces categories of metrics that extends through

the phases of software development life cycle which are

independent of methodologies. The framework is

designed to address the wide range of quality

characteristics for the software products and processes

i.e. as shown in the figure: 2, the following frame work

enables better description of software quality aspects

and its importance [9].

3.1. UML HEURISTICS WITH SOFTWARE

QUALITY METRICS
UML is used as the first characteristic to be subjected to

software quality metrics, we may speak of. ‘Quality

with UML’ (QWUML). The objective is to efficiently

design and deploy the software systems that meet

customers’ requirements; the efficiency which can be

measured using QWUML is in terms of cost, quality

and lead time.

The dynamic view is depicted with the use

cases, list of activities/interactions and the states and

there a change by the sequence diagrams, finally the

static view is depicted with the class diagram.

If we go with the details of the external metrics from the

ISO/IEC 9126 which are listed below, these metrics are

indicators that relate to high level size, product and

development process quality indicators that are of

interest to the software development and maintenance

activity. When looking for the graphical support for

these software quality metrics by virtue of UML, the

requirements are categorized according to the FURPS+

model [9] a useful mnemonic. The requirements are

categorized and the functional and non functional

support is provided to these software metrics, as by

graphical illustration of these software metrics by

effective use of UML enhance their worth regarding the

software quality, performance, and productivity using

the ISO/IEC 9126. In the following comparison in the

Table 2 given below we show the relation of the

ISO/IEC 9126 external metrics and the UML support

for these software metrics in this regard.

ISO/IEC 9126,

External metrics

UML heuristics for

software metrics

Functionality metrics Functional

Reliability metrics Reliability

Usability metrics Usability

Efficiency metrics Efficiency

Maintainability &

Portability metrics

Supportability

Table 2: ISO/IEC 9126 External metrics and UML support for

the metrics.

Working with the requirement categorization and

functional and non functional design aspects of the

software products, the following results can be achieved

while working with the UML in regard with these

ISO/IEC 9126 external metrics. Some requirements are

called quality attributes [BCK98] of a system. These

include usability, reliability, and so forth.

The 2006 International Arab Conference on Information Technology (ACIT'2006)

In next section 4, using these UML characteristics to

different software metrics, we have considered a simple

library scenario to issue books to university employees

as shown in figure 3. Further the logical view of this

library issue book domain, class diagram as figure 4,

showing the different aspects and relationing factors to

complexity within classes.

4. UML CHARACTERISTICS TO

SYSTEM DESIGN
The application of software metrics has proven to be an

effective technique for estimating, assessing and

improving software quality and productivity [12]. UML

is used as the first characteristic to be subjected to

software design quality, due to enrich & standardized

graphical modeling support. As early validation and

verification of functional & non-functional

requirements is becoming crucial in early stages of

software development in context to software design

quality.

Modeling is a useful working scenario carried

out over the years in software development, modeling is

abstraction and use case diagram in UML is one such

kind of abstraction. Defining use case diagram makes it

easier to break up a complex application (big bubble/

use case), into simple, discrete pieces that can be

individually studied. For different UML heuristics to

system design, we here consider first a simple library

use case example to identify some domain requirements

as shown in figure 3 below.

Although there are number of other use cases

and further aspects in this library use case diagram as

shown in figure 3, but here just few use cases are

mainly addressed for one domain design to

BOOK_ISSUE. In figure 3, the Employee (actor) of any

department applies for issuing of a book, the book

status is checked and if book is available, it is issued to

desired employee with corresponding of another actor

librarian. The data used for this research for the

complexity indicators from UML is taken from ‘”HRM

system for the hospital Enterprise in ISD, Pak”. This is

already a running project developed by Shahid Nazir

Bhatti. Already the documentations are available for the

Requirement analysis, Design and implementation parts

of this project. We have used the different ASCII

Editors to UML diagrams retrieve the data from UML

diagrams and check the validity with respect to data we

have from the enterprise’s project [15].

Add Title

Remove or Update Title

Add Item

Remove Item

Add Brrower

Remove or Update Barrower

Barrower

Make Reservation

Remove Reservation

Lend Item

Return of Item

Librarian

<<uses>>

Maintenance

Librarian

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

<<uses>>

Figure 3: Use case diagram for current Library domain

example.

The complexity indicators with respect to use case

diagram (figure 3) consist of the following factors:

� Candidates’ classes

� Major functionality modules

� Dependency relationship

� Object association

From the figure 3 the numerical values of these

complexity indicators are shown in table 3 in detail. We

have used the Rational Rose for UML diagrams and

ASCII Editors and XML code for these facts.

The 2006 International Arab Conference on Information Technology (ACIT'2006)

Complexity

Attributes

Recognized

by

Measurements

Candidate

Classes

Object

Class

02 (figure 3)

Major

functionality

modules

(use cases)

Object use

case

11 (figure 3)

dependency

between

objects

stereotype Uses (figure 3)

dependency

between use

cases

stereotype Uses (figure 3)

 (object role/

use case,

initiator)

Supplier 02 (Lib.

Barrow.)

Table 3: Internal code depiction from the use case diagram.

C= (x)
a

+ b(x) + d (where a≠ d)
3

(Here ‘C’ is for complexity, ‘a’ are the number of

object classes, ‘b’ number of object use cases, and ‘d’

are actors).

Generating the “Logical View” i.e. Class

diagram from this library use case diagram (figure 3)

using Rational Rose for one of the domain ISSUE

BOOK. The resulting Class diagram based on the

library use case diagram is shown in figure 4. In

different classes within class diagram beside other

information are also description for set of objects that

share the same specifications of features, constraints

and semantics [4].

 In Static structures of models, called also state

models are expressed in Class a diagram, class diagram

visualizes classes (and interfaces), their internal

structure, and their relationships to other classes. The

class diagram is one of the static models of the use case

diagram and defines the further static aspects to the

design of the system. The resulting Class diagram from

the library use case for current BOOK_ISSUE segment,

featuring the aspects of schema generation (key

attributes), attributes, methods and relational integrity as

shown in figure 4 below.

In figure 4, as can be seen from figure the

stereo types of these different classes are ‘Relational

Table’, as besides successfully generating the logical

view from use case diagram. With predefined

operations and the integrity constraints toward relational

database (schemas), the schemas are generated

(Rational Rose, UML to Oracle8 database).

3
 Work related to Software quality metrics attributes with UML

diagrams use case diagram, sequence, deployment & activity

diagrams etc is already accepted for publication in CFP-2006, Prague

Czech.

In figure 4, a class diagram is shown with attributes and

methods to simple library working, the names of classes

in this class diagram are BOOK, BOOKCATEGORY

and BOOK_ISSUE, EMPLOYEE, and DEPT as shown

in figure 4. In this library working the class BOOK is

the one diagram, used by the other classes for their

relational functionality. In class BOOK, the attribute

BOOKNO is a Key attribute used as Primary key and

used as foreign key to the classes BOOKCATEGORY

and BOOK_ISSUE. Further in class

BOOKCATEGORY there are two key attributes, the

BOOKCATNO as primary key and BOOKNO as

foreign key. In BOOK_ISSUE there are again three key

attributes but they are all foreign key attributes from

classes BOOK, BOOKCATEGORY and EMPLOYE.

Further with two classes EMPLOYEE and DEPT there

are two key attributes EMPNO and DEPTNO

respectively as can be shown in figure 4.

Figure 4: Class diagram to relational tables.

With the process of class mapping of the current class

diagram to relational schemas (tables), with the process

of UML Class diagram with Rational Rose to database

server.

BOOK

BOOKNO : NUMBER

BOOKNAME : VARCHAR2

BPUBLICATIONDATE : DATE

BOOKAUTHOR : VARCHAR2

BPUBLISHER : VARCHAR2

DISPLAY()

UPDATELIB_DATABASE()

<<RelationalTable>>

BOOK_ISSUE

BOOKNO : NUMBER

BOOKCATNO : NUMBER

EMPNO : NUMBER

B_STATUS : VARCHAR2

BISSUEDATE : DATE

DISPLAY()

BOOK_ISSUE()

UPDATELIB_DATABASE()

<<RelationalTable>>

BOOKCATEGORY

BOOKNO : NUMBER

BOOKCATNO : NUMBER

BCATEGORYNAME : VARCHAR2

BCATEGORYDETAIL : VARCHAR2

DISPLAY()

UPDATELIB_DATABASE()

<<RelationalTable>>

EMPLOYEE

EMPNO : NUMBER

ENAME : VARCHAR2

JOB_RANK : VARCHAR2

DEPTNO : NUMBER

JOIN_DATE : DATE

ADDRESS : VARCHAR2

UPDATE_LIB_DATABASE()

DISPLAY()

UPDATELIB_DATABASE()

<<RelationalTable>>

DEPT

DEPTNO : NUMBER

DNAME : VARCHAR2

DLOCATION : VARCHAR2

UPDATE_DEPT_DATABASE()

DISPLAY()

<<RelationalTable>>

The 2006 International Arab Conference on Information Technology (ACIT'2006)

The successful relational schemas are generated for

related database tables (oracle in this case). In figure 4,

the 5 classes in class diagram i.e. BOOK,

BOOKCATEGORY, BOOK_ISSUE, DEPT, and

EMPLOYEE results here five independent (but

relational) database tables are generated in oracle

database server. Further, the relational classes and detail

attributes to complexity of the class diagram are shown

in relational-db report in next section. The hierarchal

structure of these relational tables (e.g. Book Issue) can

be viewed from Oracle (Describe Book Issue).

The physical code (to oracle database)

illustration of these five classes in class diagram is

shown in next section in figure 5 below. Further, figure

5 show the physical names of classes, attributes,

dependencies (if any) of these classes.

4.1. RELATIONAL SCHEMA REPORT

FROM THE CLASS DIAGRAM
 The relational database report (in oracle) from class

diagram in previous section is shown below, in figure 5.

Oracle 8 Database Model Report
Sorted by Name Sonntag, 28. Mai 2006
Schema Logical Name: BOOK_ISSUE
Physical Name: BOOK_ISSUE
===
Class Name: BOOK_ISSUE StereoType:
 <<RelationalTable>>
Physical Name: BOOK_ISSUE
Documentation: Details about BOOKS. Columns
Name: BOOKNO
 Physical Name: BOOKNO NUMBER(,05)
NullsAllowed : True Name: BOOKCATNO
Physical Name: BOOKCATNO NUMBER(,05)
NullsAllowed : True
Name: EMPNO Physical Name: EMPNO NUMBER(,05)
 NullsAllowed : True Methods
 Name: DISPLAY Physical Name: DISPLAY()
Name: UPDATELIB_DATABASE Physical Name:
UPDATELIB_DATABASE()
Dependencies BOOK <<RelationalTable>>
BOOKCATEGORY <<RelationalTable>> Schema Logical
Name: BOOKCATEGORY
==
Class Name: BOOKCATEGORY StereoType:
<<RelationalTable>>
Physical Name: BOOKCATEGORY
Documentation: BOOK Categorization. Columns
Name: BOOKNO Physical Name: BOOKNO
NUMBER(,05)
Name: BOOKCATNO Physical Name: BOOKCATNO
NUMBER(,05)
NullsAllowed : False (Primary Key)
Methods Name: DISPLAY Physical Name:
DISPLAY()
Name: UPDATELIB_DATABASE Physical Name:
UPDATELIB_DATABASE()
Dependencies BOOK <<RelationalTable>>

Schema Logical Name: BOOK Physical Name: BOOK4

Figure 5. Relational Tables report from Class Diagram.

It Show the main object in this library working scenario

i.e. BOOK (as object table). It shows the simple

attributes, methods of these classes beside the relational

4 Figure 5 show some aspects of Oracle report (Relational database
report from figure 4) for the class diagram as shown in the figure 4.

dependencies between classes i.e. BOOK,

BOOKCATEGORY, BOOK_ISSUE, DEPT and

EMPLOYEE. The key attributes to relational

dependencies to identify the records uniquely are shown

with the keyword ‘primary key’. In the following report

from class diagrams to relational tables as shown in

figure 5, there are number of attributes which are the

domain candidates to the complexity of the class

diagrams. As complexity of the class diagrams in

following domain in figure 4 and 5 depends on the

relational depth with in the existing classes i.e.

relationship, how these classes are related to each other.

Importantly in case of different class diagrams with

respect to relational database, the complexity depends

on many factors, out of them some factors are type of

relationship (key-attributes) among classes i.e. are the

relationship is bidirectional or unidirectional. Then the

multiplex relationship among classes in class diagrams

e.g. case of generalization, association and composition

etc.

In the figure 5 the complexity of some of the

factors to system design are candidate to such

complexity (mechanical code with respect to Rational

Rose). The software metric here is combination of the

following characteristics, the number of key attributes

(NKAS), Depth of Relationship between classes (DRC),

Inter-relational attributes (IRA) and Inter-relational

methods (IRM) as shown in table 4.

Metric Measurements:

The metric proposed on these findings (figure 4 &

figure5) is shown in table 4. Here the characteristics

such as, the key attributes (KAS) here are the

combination of the number primary key and foreign key

attributes used here. With the higher or lower value of

(KAS) key attributes, it can be thus one of indication of

the relationship dependencies (as some relationship do

not need key attributes among classes) between the

multiple relational classes.

Higher the value of the factor KAS, thus show

the complex nature of relationship (DRC) between the

different classes and hence relational tables in the

database as shown in table 4.

The depth of relational dependencies (DRC) here

between classes is a total factor of IRA and IRM.

Where IRA is inter-relational attributes and IRM is

inter-relational methods.

As the relationship among classes just not of

relational dependencies (KAS), as it can be that of

association, generalization, or composition etc. That’s

why, for this purpose, the DRC is also combination of

these two factors here i.e. IRA and IRM, although DRC

value as domain of i varies from 0, 1, 2... n as shown in

table 4.

The 2006 International Arab Conference on Information Technology (ACIT'2006)

Table 4: Metric Characteristics for software complexity with

Relational database.

The DRC value consist of two candidates values IRA

and IRM. The IRA can be key attributes as well as also

non key attributes depending upon the system design

requirements. Thus Relational hierarchy, i.e. depth of

relationship between classes (DRC) is total sum of the

two key factors here, 1st is shared methods between

classes i.e. inter-relational methods IRM and then 2ndly

inter-relational attributes in multiple classes. While

NKAS ≤ DRC, depicts that although every

occurrence of KAS show the relationing between

classes but depth in relational classes is not only

dependent to attributes too, as methods are also used for

this purpose.

As number of key attributes showing here the

existence of the relationship between different classes,

beside KAS factor is also indication of depth in

hierarchy to interrelated classes’. Hence total

complexity in this relational database design (class

diagrams) is combination of number of key attributes

within classes (NKAS) as well as relational hierarchal

tree (depth) with in classes i.e. DRC as shown in table

4. Thus complexity of class diagram here (table 4) is

“Comp. C ≈

∑
=

+
m

j 0

NKASj) (DRCj

”, where value

of this complexity domain varies from 0 to m i.e. j= 0,

1, 2 … m. Higher the value of factor j in the Comp. C,

higher will be the complexity of the class diagrams in

that relational database domain, the detail values to

these aspects are described in example next.

Metric Results:

Looking in class diagram (in figure 4), the class

diagram and metric characteristics in table 4 beside

computational results of COCOMO model about

database and product complexity too. The best suitable

results to the complexity of the design with given

measurements [table 4] are as follows:

5
 Work related to Software quality attributes with UML diagrams use

case diagram, sequence, deployment & activity diagrams etc is

already accepted for publication in CFP-2006, Prague Czech.

Results: = ((DRC: Depth of relationship between

classes), (KAS: Key attributes), Comp. C: Complexity

of Classes))

{

20-40, 20-35, 40-50 /* GOOD*/

 // {i.e. close range to this ratio}

5-15, 4-12, 20-25 /*ACCEPTABLE*/

// {intermediate range values here}

0-2, 0, 5-18, /* POOR*/

 // {relational values hardly used}

50-80, 40, 60 /*POOR*/

// {to large values for relational values}

}

The suitable combinations to the designing of the

system in this case can be e.g. {22, 15, 25} and poor

results in this can be {1, 2, 5} or {43, 5, 55} or may be

combination of both. As by having the lowest value of

the initial two factors (i.e. DRC, Comp. C) show the

less or no interaction between relational classes and vice

versa highest value of these two factors depicts the

ambiguous relational dependencies. By Boehm’s

computational values with COCOMO model if database

(relational tables) size is nearer or greater then 100

show instability [13]. Thus the medium range or

combinations of medium results between these three

factors show more suitable strategy. Further work is

required toward the Efforts and Difficulty level to the

domain of relational systems with UML heuristics i.e.

how can the complexities of UML heuristics affect the

metric’s characteristics of the relational system and

security issues to relational systems.

5. CONCLUSION
The increasing demand of graphical systems design and

to model driven architectures and modest improvement

in quality to systems designs. There is further need of

technologies to object integration beside growing

complex structure to current systems. This work about

software Quality with UML (QWUML) helps to

establish efficient software quality metrics on the basis

of UML diagrams. Thus importantly the need of

quality with the aspects to software system toward

issues like information multiplicity, mapping and

system efficient reusing. Quality is the key determinant

of success regarding software development; one can no

longer rely on functionality & productivity of the

system with out having quality with international

standards.

In this work, efficient use of UML diagrams

with relational system design (system) helps in

fabricating optimal system which equally qualify for the

constraints toward integrity & system reuse (code

conversion). Thus data and service integrity to system is

further boosted by the use of consistency checks (key-

integrity & mapping issues) with UML and system

DRC=

)
IRMi

(IRAi

0

∑
=

+n

i

∑ i=

0,1,2,3... n

DRC= 29

(IRA= 19,

IRM=10)

NKAS ≤ DRC

N=

(number

of)

KAS= 10

Comp.C≈

∑
=

+m

j 0 NKASj)

 (DRCj

 ∑ j=0, 1,

 2, 3...m

Comp. C=

29(fig. 5)5

The 2006 International Arab Conference on Information Technology (ACIT'2006)

requirement specifications. The working domain this

way i.e. system design complexity with UML leads to

the quality issues relating to increasing the efficiency,

integrity (relational aspects) and system

Understandability. Further work required in multiple

topics in relation to system design issues like effort &

difficulty, efficient reliability of system-design and

domain constraints with UML diagrams.

REFERENCES
[1] C. J. Date, An introduction to Database system,

Addison-Wesley pub, Inc, 1975.

[2] C. J. Date, An introduction to Database system (p.

series), Vol-2, Addison-Wesley pub, Inc, 1985.

[3] Craig Larman, Applying UML and Patterns,

Prentice Hall, Inc, 2000.

[4] Dan Pilone, Neil Pitman, UML 2.0 In a Nutshell,

O’Reilly Media, Inc. 2005.

[5] ISO/IEC TR 9126-2: Software engineering –

Product quality – Part 2: External metrics, 19-12-

2000.

[6] Ivar Jacobson, Grady Booch, James Rumbaugh,

The Unified Software development process,

Addison Wesley, Inc.

[7] Joc Sander, Eugene Currean, Software Quality,

Addison Wesley, 1994.

[8] John A Mcdermid, Software Engineer’s Reference

Book, Butterworth-Heinemann, 1991.

[9] K. H. Möller, D. J. Paulish, Software Metrics,

Chapman & Hall Computing, 1993.

[10] Leszek A, Maciaszek, Bruce Lee Liong, Practical

Software Engineering, Pearson Education Ltd, UK

2005.

[11] Lorenz, Mark and Kidd, Jeff, Object Oriented

Software Metrics, Prentice Hall Publishing, 1994.

[12] Shahid Nazir Bhatti, Why Quality? ISO 9126

Software Quality Metrics (Functionality) Support

by UML Suite, SEN-2005, UK.

[13] Shari Lawrence Pfleeger, Software Engineering

Theory & Practice, Prentice Hall, Inc, 2001.

[14] Tom Gilb, Dorothy Graham, Software Inspection,

Addison Wesley, 1993.

[15] D.F.D’Souza, A.C.Wills, Objects, Components,

and Frame works with UML, Addison Wesley,

1998.

