
DETECING AND CORRECTING FAULTY CONJECTURES

MOUSSA DEMBA KHALED BSAIES

Faculty of Sciences of Tunis
Department of Computer Sciences

Tunisia

ABSTRACT: We present a method for patching faulty conjectures and program diagnosis in automatic theorem
proving during a proof attempt. In this paper we discuss correctness of the approach and we show the application
of corrective predicates to program diagnosis when conjectures are unprovable. The approach is implemented in
an interactive theorem prover called SPES.

Keywords: Corrective predicates, Program synthesis, Automatic theorem proving, Abduction, Folding/unfolding.

1 INTRODUCTION
We present a method for patching faulty conjectures in
automatic theorem proving. The conjectures we are in-
terested in here are implicative formulas that are of the
following form : ∀x φ(x) : ∀x ∃y Γ(x, y)← ∆(x). A
faulty conjecture is a statement ∀x φ(x), which is not
provable in some given theory T , defining all the pred-
icates occurring in φ, i.e, M(T) 6|= ∀x φ(x) where
M(T) means the least Herbrand model of T but it
would be if enough conditions, say P , were assumed
to hold, i.e.,M(T ∪ P) |= ∀x (φ(x)← P (x)), where
P is the definition of P . The missing hypothesis P is
called a (candidate) corrective predicate for φ. To con-
struct P we use the abduction mechanism. According
to Peirce [9], abduction is the process of hypothesis
formation and is described as follows: Given φ and
φ ← P , hypothesize P as a possible justification of
the formula φ. In the case of automatic theorem prov-
ing we are sometimes faced with unprovable conjec-
tures. A classical theorem prover will do nothing more
but signals simply this failure. However, when a proof
attempt fails either the formula is false or the program
has a bug or the attempted proof is insufficient. For
example, if we have to prove the (true) formula about
sorting linear lists

sort(sort(x)) = sort(x) (1)

me have to (over)generalize it to the faulty conjecture
[10]

sort(y) = y (2)

A theorem prover will do nothing more but reject it
without explaining and identifying the source of the

error. A possible solution to this problem is to try to
modify the conjecture (2) back into a theorem, for ex-
ample by adding a condition on the list y as follows:

(sort(y) = y)← ordered(y) (3)

where ordered(y) means that y is an ordered list. The
main problem is to know what condition has to be
added. Now to verify (1) it is sufficient to prove

ordered(sort(x)) (4)

The predicate ordered is then a corrective predicate
for the conjecture (2). One of the advantages of this
technique is that we can continue with the use of gen-
eralization instead of having to find an alternative ap-
proach. This problem can also be seen as program syn-
thesis from incomplete specification [6]. For example,
giving only the definition of the function sort, the con-
jecture (3) cannot be proved, the definition of the func-
tion ordered has to be constructed somehow.
In this paper, our aim is to turn an unprovable con-
jecture into a theorem by synthesizing the missing hy-
pothesis. The missing hypothesis is represented by a
(corrective) predicate, say P , defined by some pro-
gram P . P is obtained by exploiting information de-
rived from a failed proof attempt of φ. In order to syn-
thesize P , we have proposed in [2] an extension of the
program synthesis method of Fribourg [4]. Fribourg
considers the proof system named “extended execu-
tion” of [8] and a restricted form of structural induc-
tion. Note that his method extracts programs from true
conjectures and does not deal with faulty conjectures.
The rest of the paper is organized as follows : In sec-
tion 2 we describe our proof system. Section 3 presents

a general outline of our approach. We present in sec-
tion 4 significant examples for program diagnosis. The
last section is a conclusion and limitations of the pro-
posed approach.

1.1 PRELIMINARIES
Notation 1 Throughout the paper existentially quan-
tified variables are distinguished from universal vari-
ables by giving them uppercase names. Γ, ∆ and Λ
denote conjunctions of atoms; φ and π denote implica-
tive formulas; A and B denote atoms, and θ and σ
denote substitutions. mgu means most general uni-
fier and < πi | Pi > denotes the formula πi and its
corrective predicate Pi. Henceforth, the term formula
(resp. program) will often be used as an abbreviation
for implicative formula (resp. definite logic program).

Definition 2 (Partial correctness) Let φ : Γ(x, Y)

← ∆(x) be an implicative formula whose predicates
are defined by the program T . Let P be a pro-
gram defining a corrective predicate P . The pro-
gram P is partially correct for T with respect to φ
iff M(T ∪ P) |= (Γ(x, y)← ∆(x), P (x, y)).

Definition 3 Suppose the formulas < π1|P1 >, ..., <

πk|Pk > are obtained from the formula < π0|P0 >
by the application of one-step deduction ruleR. A pro-
cedure associated with R is a program QR which de-
fines P0 in terms of P1,...,Pk and in terms of P0 if
QR is recursive.

Definition 4 Let P and Q be two corrective predi-
cates for some conjecture φ. (i) P is more plausible
than Q iff for all x P (x)← Q(x) holds. (ii) if for any
Q, P is more plausible than Q, then P is a maximal
corrective predicate for φ.

By the definition (4), we have the proposition.

Proposition 5 A corrective predicate P for the for-
mula φ is maximal if the formula ∀x (P (x) ← φ(x))

holds.

1.2 AN INTUITIVE PRESENTATION
Let us consider the program defining the predicates
plus and nat:

PLUS















plus(0, x, x) ←
plus(s(x), y, s(z)) ← plus(x, y, z)
nat(0) ←
nat(s(x)) ← nat(x)

where s and 0 are constructors. The atom plus(x, y, z)

is true if z = x+ y and nat(x) is true if x is a natural
number. Let us consider the following specification for
the subtraction function in natural numbers : given two
natural numbers v and w, find X such that v+X = w.

To this specification corresponds the implicative for-
mula :

plus(v,X,w)← nat(v), nat(w) | P (v,X,w) (5)

which is false, as we discover while attempting to
prove it, for example there is no X verifying 2 +X =

1. Nevertheless, there are particular values for the uni-
versally quantified variables for which the formula (5)
is true. We are then looking for an hypothesis P(v,X,w)
such that the formula

plus(v,X,w)← nat(v), nat(w), P (v,X,w)

be a theorem. To do that, we try to prove (5) and to
keep track of substitutions on P . After some unfolding
steps on (5) w.r.t the atom nat(v), we get the following
formulas (without quantifiers) :

plus(0, X,w)← nat(w) |P (0, X,w)

plus(s(v), X,w)← nat(v), nat(w)

|P (s(v), X,w) (6)

and an unfolding step on (6) w.r.t the atom nat(w)

yields :

plus(0, X,w)← nat(w) |P (0, X,w) (7)

plus(s(v), X, 0)← nat(v) |P (s(v), X, 0) (8)

plus(s(v), X, s(w))← nat(v), nat(w)

|P (s(v), X, s(w)) (9)

• the formula (7) can be simplified into true with
the existential substitution {X/w}; and the cor-
responding corrective predicate is the unit clause
P (0, w, w)←.

• the formula (8) is fully false thus the corre-
sponding corrective predicate is set to false, i.e.
P (s(v), X, 0) = false.

• by the definition of plus, the formula (9) can be
transformed into the formula

plus(v,X,w)← nat(v), nat(w)

| P (s(v), X, s(w)) (10)

• Finally, the formula (5), the induction hypothe-
sis, is an instance of the formula (10). An ob-
vious folding step between (10) and (5) allows
us to yield the formula true, and the recursive
clause for P is generated: P (s(v), X, s(w)) ←
P (v,X,w).

We have then synthesized a definition, say P , of P :

P (0, w, w)← (11)

P (s(v), X, s(w))← P (v,X,w) (12)

Note that in the recursive clause (12) the existential
variable X remains unchanged. We can eliminate this
variable. For instance, a truncation of P w.r.t. its sec-
ond argument yields the following program P ′ :

P ′(0, w)←
P ′(s(v), s(w))← P ′(v, w)

One can remark that P ′ is exactly the relation ≤ over
natural numbers, and we have
M(PLUS ∪ P ′) |= (plus(v,X,w)← P ′(v, w))

Therefore P ′ is a corrective predicate for (5), i.e., (5)
is true if P ′(v, w) holds. Strategies of projection are
discussed in [4]. The predicate P ′ is also maximal :
M(PLUS ∪ P ′) |= (P ′(v, w)← plus(v, x, w))

This explanation is significant (in the case of failure)
for the user because it enables him to know the source
of the error and to fix it. It is also different from
explanations by yes/no provided by classical theorem
provers.

2 DESCRIPTION OF THE
PROOF SYSTEM

The system presented here uses deduction rules, that
include unfolding and folding, that allow us to prove
implicative formulas. Intuitively, unfolding is an ex-
tension of SLD-resolution and folding applies the in-
duction hypotheses. Indeed, whereas an unfold step re-
places a term that “matches” the conclusion of a defini-
tion in the program by the corresponding hypothesis, a
folding right (resp. left) step replaces a conjunction of
atoms that match the hypothesis (resp. conclusion) of
an induction hypothesis by the corresponding conclu-
sion (resp. hypothesis). Each inference rule is associ-
ated with a procedure construction of corrective pred-
icates. The application of an inference rule on a for-
mula π generates a finite set of formulas πi, i=1,...,k,
such that π follows from the πi’s in the least Herbrand
model of the program under consideration. The pro-
cess is iterated until all the formulas newly generated
are trivial. We present the main rules of our proof sys-
tem when applied to implicative formulas and define
the associated corrective predicates.

Definition 6 (Negation as failure inference (nfi))
Let P be a program, π0 : Γ ← ∆, A a formula and
C = {c1, . . . , ck} the set of clauses of P such that
ci : Bi ← ∆i. Suppose that θi = mgu(Bi, A). Then
nfi on π0 w.r.t to the atom A yields a conjunction of k
formulas :

< π0 : (Γ← ∆, A) | P0 >
↓ nfi

< πi : (Γ← ∆,∆i)θi | Pi >i=1,...,k

If for all i=1,...,k Pi is a corrective predicate for πi

(i.e. πi ← Pi holds), then P0 is a corrective predicate
for π0. Hence Qnfi = {P0θi ← Pi}i=1,...,k.

Example 7 Consider the formula π0 :

plus(u, v, w) ← plus(v, u, w) and the corresponding
corrective predicate P0(u, v, w) .
The application of nfi on π0 with θ1 = {v/0, u/x,

w/x} and θ2 = {v/s(x),
u/y, w/s(z)} yields the following two formulas:
π1 : plus(x, 0, x)← | P1(x)
π2 : plus(y, s(x), s(z))← plus(x, y, z) | P2(y, x, z)

and Qnfi defines P0 in terms of P1 and P2 as
follows:

P0(x, 0, x)← P1(x)

P0(y, s(x), s(z))← P2(y, x, z).
Next we have to synthesize the definitions of P1 and
P2 by proving π1 and π2.

Definition 8 (Definite clause inference (dci)) Let P
be a logic program and c a definite clause in P of the
form B ← ∆′. Let π be an implicative formula of the
form Γ, A ← ∆ and suppose that A is unifiable with
B by an existential substitution1 θ, i.e., θ=mgu(B,A).
The rule of dci applied on π w.r.t the atom A generates
the singleton {π′}:

< π : (Γ, A← ∆) | P >
↓ dci

< π′ : ((Γ,∆′)θ ← ∆) | P ′ >

and Qdci = {Pθ ← P ′}.

Example 9 Consider the formula
π : plus(s(u), s(v), s2(w)) ← plus(u, v, w)

and P (u, v, w) the corresponding corrective predi-
cate. Then dci on π yields:
π′ : plus(u, s(v), s(w))← plus(u, v, w)|P ′(u, v, w)

and the clause P (u, v, w) ← P ′(u, v, w) that defines
P in terms of P ′ is generated.

We define the folding rules that apply induction hy-
potheses.

Definition 10 (Cut right (cutr)) Let π1 : Γ ←
∆1,∆2 and π0 : Λ ← Π be two formulas satisfy-
ing the following conditions : (i) θ is a substitution
such that Πθ = ∆1, (ii) for any local variable x in Π,
xθ is a variable and does not occur other than in Πθ,
and (iii) θ replaces different local variables in Π with
different local variables in∆1. Then cutr on π1 using

1θ substitutes only existential variables of A.

π0 yields {π2}:

< π0 : (Λ← Π) | P0 >
↓

< π1 : (Γ← ∆1,∆2) | P1 >
↓ cutr

< π2 : (Γ← Λθ,∆2) | P2 >

If P2 (resp. P0) is a corrective predicate for π2 (resp.
π0) then P1 is a corrective predicate for π1. Hence
Qcutr = {P1 ← P0θ, P2} that defines P1 in terms
of P0 and P2.

Example 11 Going back to the example 7, one can
remark that the right hand side of π2 is an instance
of the right hand side of π0 with the substitution
θ = {v/x, u/y, w/z}. We can therefore apply the rule
of cutr on π2 using π0, and we get the formula:
π3 : plus(y, s(x), s(z))← plus(y, x, z)|P3(y, x, z)

and the definite clause P2(y, x, z) ←

P0(y, x, z), P3(y, x, z) is generated.

Definition 12 (Cut left (cutl)) Let π1 : Γ1,Γ2 ← ∆

and π0 : Λ ← Π be two formulas satisfying the fol-
lowing conditions : (i) θ is a substitution such that
Λθ = Γ1, (ii) for any local variable z in Λ, zθ is a
variable and does not occur other than in Λθ, and (iii)
θ replaces different local variables in Λ with different
local variables in Γ1. Then the application of cutl on
π1 using π0 yields {π2}:

< π0 : (Λ← Π) | P0 >
↓

< π1 : (Γ1,Γ2 ← ∆) | P1 >
↓ cutl

< π2 : (Πθ,Γ2 ← ∆) | P2 >

and Qcutl = {P1← P0θ, P2}.

Definition 13 (Simplification (simp)) Let
π : A,Γ ← B,∆ be a formula such that there
exists θ satisfying Aθ = B and θ substitutes only
existential variables of A. Then simp on π yields the
singleton {π′} :

< π : (A,Γ← B,∆) | P >
↓ simp

< π′ : (Γθ ← ∆) | P ′ >

and P is defined in terms of P ′ by
Qsimp = {Pθ ← P ′}.

Example 14 Consider the formula
π : plus(x, y,X), plus(X, z, V) ← plus(x, y, t)

| P (x, y,X, z, V, t)

With the existential substitution θ = {X/t}, π can be

simplified into
π′ : plus(t, z, V)← | P ′(t, z, V)
The clause P (x, y, t, z, V, t) ← P ′(t, z, V) is then
generated.

Definition 15 (Postulate (post)) Let π : Γ ← be an
implicative formula and P be a corrective predicate
associated with π. Then the application of the rule of
postulate on π yields the formula true.

< Γ← | P >
↓ post

< true | true >

and Qpost = {P ← Γ}, i.e. P is true if Γ holds. One
can remark that← Γ is a lemma.

Example 16 In the example (7), to complete the proof
of π1 we can postulate plus(x, 0, x), and we obtain the
corrective clause P1(x)← plus(x, 0, x).

Definition 17 (Failure (fail)) Let P be a program, π :
Γ ← ∆ a formula and P a corrective predicate for π.
If Γ contains an atom that is not unifiable with all the
clause heads in P and thatM(P) |= ∆ then the rule
of failure is applied and yields the formula false:

< Γ← ∆ | P >
↓ fail

< false | false >

andQfail is the empty set. This rule allows us to detect
totally false conjectures.

Example 18 Suppose we have to prove the formula
: π : plus(s(v), U, 0) ← nat(v). π is false be-
cause in one hand the left hand side cannot be re-
duced using the program PLUS and on the other
hand we have M(PLUS) |= nat(x). The formula
plus(s(v), U, 0)← nat(v) is then false and the corre-
sponding corrective predicate is set to false.

Proposition 19 ([4, 2]) The procedures Qnfi, Qdci,
Qcutr, Qcutl, Qsimp, Qpost and Qfail preserve par-
tial correctness.

3 A GENERAL OUTLINE OF
THE METHOD

To illustrate the main idea behind our method we
present it with non-trivial examples. Let’s define first
the notion of counterexample that allows us to detect
incorrect conjectures and to exhibit counterexamples.

Definition 20 (Counterexample) Let P be a pro-
gram. An example of an implicative formula Γ ← ∆
is a substitution σ such that: (i) all the universally
quantified variables in the formula are instantiated
to ground terms by σ, i.e., ∆σ is ground, and (ii)
M(P) |= ∆σ.
A counterexample is an example σ butM(P) 6|= Γσ.

For example, if we consider the formula

plus(v,X,w)← nat(v), nat(w)

then the substitution σ = {v/s(0), w/0} is a coun-
terexample, because nat(s(0)) and nat(0) both hold
inM(PLUS) andM(PLUS) 6|= plus(s(0), X, 0).

Theorem 21 (Propagation of a counterexample)
If there is a counterexample on a node N in a proof
tree, there is at least one successor node of N on
which there is a counterexample (assuming that the
successor is not obtained by the rule of postulate).

Proof 22 We have cases according to what deduction
rule is applied. Let σ be a counterexample on the node
N and σ′ be the one on a successor node.

• If Γ ← ∆ is the formula false ← true, then the
rule of failure is applied and the son is marked
false. if Γ ← ∆ is the formula true ← ∆, then
we do not have σ.

• The last rule is nfi: σ is counterexample, i.e.,
M(P) |= ∆σ and M(P) 6|= Γσ. Since nfi is
equivalence preserving [7], there is i ∈ [1, k]
such that M(P) 6|= (Γ ← ∆i,∆2)θiσ. We
can always find a ground substitution σ′′ such
that (∆i,∆2)θiσσ

′′ is a ground term and we
have M(P) |= (∆i,∆2)θiσσ

′′ and M(P) 6|=

Γθiσσ
′′. σ′ = σσ′′ is then a counterexample of

(Γ← ∆i,∆2)θi.

• The last rule is dci: obviously σ = σ′.

• The last rule is cutr : suppose that ∆ ≡ ∆1,∆2

and a substitution θ such that Πθ ≡ ∆1. σ is
a counterexample, then M(P) |= (∆1,∆2)σ,
and M(P) 6|= Γσ. Whe have two scenarios
: (i) the induction hypothesis is true, that is
M(P) |= (Λ ← Π)θσ. Let σ′′ be a ground
substitution such thatM(P) |= Λθσσ′′, then we
have M(P) 6|= (Γ ← Λθ,∆2)σσ

′′. Therefore
σ′ = σσ′′ is a counterexample of Γ ← Λθ,∆2.
(ii)M(P) 6|= (Λ← Π)θσ. Therefore σ′ = θσ is
a counterexample of Λ← Π.

• The last rule is cutl : the proof is similar to cutr.

• The last rule is simp : given ∆ ≡ ∆′, B and
Γ ≡ Γ′, A such that Aθ ≡ B for a given sub-
stitution θ. As σ is a counterexample we have
M(P) |= (∆′, B)σ and M(P) 6|= (Γ′, A)θσ.
Since M(P) |= Bσ then M(P) |= Aθσ. In
other words M(P) 6|= Γ′θσ, and σ is a coun-
terexample of the formula Γ′θ ← ∆′.

Example 23 We describe our method by a non trivial
example. Consider the conjecture (2), but in an im-
plicative form:

sort(x, x)← list(x) (13)

Clearly, this conjecture is true only if the list x is
ordered. The missing hypothesis is then ordered(x)

and we want to synthesize this information via a
corrective predicate. To do that we consider the
program SORT where the predicate insert inserts
an element in a sorted list and inf(x, y) is true if
x ≤ y.






































sort([], [])←
sort([a|x], z)← sort(x, y), insert(a, y, z)
insert(a, [], [a])←
insert(a, [b|x], [a, b|x])← inf(a, b)
insert(a, [b|x], [b|y])← inf(b, a), insert(a, x, y)
inf(o, x)←
inf(s(x), s(y))← inf(x, y)

The Figure (1) shows the proof tree of (13) and
the Figure (2) shows the proof in the system SPES.
Finally, the synthesized program is:

(1) P0([]) ← P1()
(2) P1() ←
(3) P0([a|x]) ← P2(a, x)
(4) P2(a, x) ← P3(a, x)
(5) P3(a, x) ← P0(x), P4(a, x)
(6) P4(a, x) ← P5(a, x)
(7) P5(a, []) ← P6(a)
(8) P5(a, [b|x]) ← P7(a, b, x)
(9) P7(a, b, x) ← P8(a, b, x)
(10) P8(a, b, x) ← P9(a, b)
(11) P6(a) ←
(12) P9(a, b) ← inf(a, b)

In the next step we simplify the interme-
diate predicates (predicates defined only by
one clause). By unfolding [13], this pro-
gram is transformed into the equivalent one :

Q







P0([]) ←
P0([a]) ←
P0([a, b|x]) ← P0([b|x]), inf(a, b)

When analyzing this program, one can remark that the
predicate P0 is the predicate ordered and we have
the correctness property :

M(SORT ∪ Q) |= (sort(l, l)← P0(l))

Moreover, the predicate P0 is maximal because we
haveM(SORT ∪ Q) |= (P0(l)← sort(l, l))

4 CONCLUSION

4.1 RELATED WORKS

Franǒvà et al. [3] have investigated the problem of
patching faulty conjectures and proposed a method
called PreS. No formal system is clearly defined and
no system is described.
Protzen [10] proposed a method which allows to syn-
thesize a corrective predicate during the proof attempt
of a faulty conjecture. His approach is similar to ours,
but uses rewriting rules and induction rules, he gives
some correctness results and dealt with universally
quantified formulas.
Also Monroy et al. have introduced a method for
correcting faulty conjectures[12]. However, they only
partially deal with the problem of correcting faults. For
example, they cannot build a corrective predicate, only
identify it as long as it is present in the working theory.
Monroy proposed in [11] another method that consists
of a collection of construction commands and is able
to synthesize corrective predicates. His approach is
also based on the proofs-as-programs paradigm and
guarantees the correction and the termination. There
is a similarity between his predicates and ours, but his
predicates are refined incrementally during the proof
process. Monroy poses the problem of automation of
the process and suggests to use a proof planning ap-
proach. His technique deal with universally quantified
formulas. None of these methods deals with true con-
jectures.

4.2 Final Remarks

We have presented a method for patching faulty con-
jectures by synthesizing definite programs. The ap-
proach presented is integrated in the interactive the-
orem prover SPES [1] using the functional language
OCaml. So if the system is used to prove a faulty con-
jecture, it will on the fly build a candidate corrective
predicate. Our approach can be used as a machine
learning technique because it allows in one hand to
add clauses to the theory until every positive example
is covered and in the other hand to discard clauses that
contain negative examples.
An important result of this work is that I have been
able to integrate abductive reasoning in an inductive
theorem prover and to learn logic programs. The main

limitation of this approach is the combinatorial explo-
sion of proof trees.
Among interesting topics which we have not discussed
in this paper is how to reduce the degree of non-
determinism occurring in the proof process. A pos-
sible solution to this problem is to introduce an order
between atoms, and allow on a proof tree only conjec-
tures reduced according to this order.

REFERENCES

[1] F. Alexandre, J.P. Finance and A. Quéré. SPES
un système de transformation de programmes
logiques. 7ième séminaire de programmation en
logique de Trégastel, CNET, 69-84, 1988.

[2] M. Demba and F. Alexandre and K. Bsaı̈es. Cor-
rection of faulty conjectures and programs ex-
traction. Proceedings of the 20th International
Workshop on Disproving Non-Theorems, Non-
Validity, Non-Provability, CADE’05,Tallinn, Es-
tonia, 2005.

[3] M. Frǎnová and Y. Kodratoff. Predicate synthe-
sis from formal specifications. In B. Neumann,
editor, proceedings of the 10th European Con-
ference on Artificial Intelligence ECAI’92, pages
87–91, Chichester, England, 1992.

[4] L. Fribourg. Extracting Logic Programs from
Proofs that Use Extended Prolog Execution and
Induction. In J.M. Jaquet, editorConstructing
Logic Programs, Chapter 2, pages 39–66, Wiley,
1993.

[5] L. Fribourg. Equivalence-Preserving Transfor-
mations of Inductive Properties of Prolog Pro-
grams. In the 5th Conference and Symposium
on Logic Programming, pages 893-908, Seattle,
USA,1988.

[6] P. Flener and Y. Deville. Logic Program Synthe-
sis from Incomplete Specifications. Journal of
Symbolic Computation, 15, 775–805,1993.

[7] T. Kanamori. Soundness and Completeness of
Extended Execution for Proving Properties of
Prolog Programs. Technical Report 175, ICOT,
1986.

[8] T. Kanamori and H. Seki. Verification of Prolog
Programs Using an Extension of Execution. In
3rd International Conference on Logic Program-
ming, volume 225 of Lecture Notes in Computer
Science, pages 475–489. Springer-Verlag, 1986.

[9] C. S. Peirce. Collected Papers of Charles Sanders
Peirce. C. Harston and P. Weiss. editors, Harvard
University Press, 1959.

[10] M. Protzen. Patching faulty conjectures. In
M. McRobbie and Slaney, editors, Proceedings
of the 13th Int. Conf. on Automated Deduction ,
CADE13, volume 1104 of LNAI, pages 77–91,
New Brunswick, NJ,USA, 1996.

[11] R. Monroy. The use of Abduction and Recursion-
Editor Techniques for the Correction of Faulty
Conjectures. In Automated Software Engineer-
ing, pages 91–100, 2000.

[12] R. Monroy, A. Bundy, and A. Ireland. Proof plan
for the correction of false conjectures. In F. Pfen-
ning, editor, Proceedings of the 5th Int. Conf.
on Logic Programming and Automated Reason-
ing, LPAR’94, volume 822 of LNAI, pages 54–64,
Kiev, Ukraine, 1994. Springer-Verlag.

[13] H. Tamaki and T. Sato. Unfold/Fold Transfor-
mation of Logic Programs. In Proceedings of
the 2nd International Logic Programming Con-
ference, Uppsala, 1984.

nfi

dci dci

cutr

simp

nfi

dci dci

simpr

post

0. sort(x,x)<− list(x) | P0.

1. sort([],[])<− | P1. 2. sort([a|x],[a|x])<− list(x) | P2.

5. insert(a,x,[a|x])<− list(x) | P5.

4. sort(x,T),insert(a,T,[a|x])<− sort(x,x) | P4.

6. insert(a,[],[a]<− | P6. 7. insert(a,[b|x],[a,b|x])<− list(x) | P7.

9. inf(a,b)<− | P9.

3. sort(x,T),insert(a,T,[a|x])<− list(x) | P3.

true

 true 8. inf(a,b)<− list(x) | P8.

true

Figure 1: Proof tree of sort(x, x)← list(x).

Figure 2: Proof session of sort(x, x)← list(x).

