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ABSTRACT 

This paper introduces a real-time model based on a 

true-concurrency semantics, expressing parallel 

behaviors and supporting at the same time timing 

constraints, explicit actions durations, structural and 

temporal non-atomicity of actions and urgency. This 

model is called Durational Action Timed Automata*. As 

an application, we propose translating rules from D-

LOTOS language specifications to DATA*'s structures. 
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1. INTRODUCTION 
Specification of real-time systems is a quite difficult 

process since these systems are known to be complex 

and critical. Formal models are usually used to specify 

behaviors and verify some expected properties; one can 

cite timed extensions of Petri nets [24,26], process 

algebras as TCCS, ET-LOTOS, RT-LOTOS, D-LOTOS 

[14,15,21,25,31] and state-transition models like timed 

automata [1,2] which extend state-transition graphs 

with timing constraints using a set of real-valued clocks. 

In this context, many questions have been raised and 

studied in the literature; an important one is how to give 

semantics to a specification model to be able to express 

concurrent and parallel behaviors in a natural way, i.e. 

to distinguish between sequential and parallel runs of 

actions. This is not the case of the interleaving 

semantics: to use this latter advisedly, actions must be 

temporally and structurally atomic (actions are 

indivisible and of null duration). 

Another question concerns the expression of non-

null duration actions. To do this, most of works 

consider actions as two instantaneous events: their start 

and their completion, in addition to the wait between 

these events. Although this approach seems to be 

attractive, it may contribute toward graph explosion in 

state-transition models. Timed automata model and 

most of their sub-classes and extensions opt for splitting 

actions up into start and completion events. Among 

timed automata sub-classes, we can quote Timed Safety 

Automata [20] in which a state of an automaton can 

contain local timing clock constraint called invariant, 

Event-Recording Automata [3] in which a 

corresponding clock xa is reset automatically with each 

occurrence of an action a, Dynamic Timed Automata 

[13,22] including a set of clocks no longer global in all 

the system but local in each automaton state, Timed 

Automata with Deadlines of [8,9] allowing the 

expression of urgency at the level of transitions by a 

left-closed deadline constraints, and Updatable Timed 

Automata [10,11,12] which are more expressive than 

original timed automata and allow, besides clock reset, 

assigning non-null values to clocks. 

By taking these models in consideration, we will 

show some points that may lead to difficulties in 

expressing non-null duration actions as well as 

concurrent and parallel behaviors. The first is certainly 

splitting actions up into start and completion events that 

is inherent to these models. To get round the posed 

problem of graph explosion, an alternative consists in 

representing actions of non-null duration as non-

instantaneous transitions, following the example of 

timed automata with non-instantaneous actions model 

[4]. According to the semantics of this latter, transitions 

are indivisible requiring that actions are structurally 

atomic, which prevents the execution of parallel actions. 

To observe clearly, consider the example of a process P 

executing two concurrent actions a and b. If the 

respective durations of a and b are 10 and 12 units of 

time, the underlying behavior can be expressed, as 

shown in Figure 1, by respectively a labeled transitions 

system, a timed automaton or a timed automaton with 

non-instantaneous actions. a↑ and a↓ express 

respectively the start and the completion of an action a. 

When actions a and b are of non-null duration, their 

simultaneous execution is included implicitly in the 

state s in the timed automaton of Figure 1.(b). This 

information is lost in Figure 1.(c) because of structural 

atomicity of actions. 
 

(c) 

a↑, x:=0 b↑, y :=0 

a↑, x:=0 

a↓, x =10? 

a↑, x:=0 

b↓, y =12? 

a↓, x =10? 

b↑, y :=0 

b↓, y =12? a↓, x =10? 

b↑, y :=0 
b a 

a b 

P 

P 

(a) (b) 

 

true,  { x} ,  a , 
x= 10, { }   

P
 

true,   { y } , b,  
y= 12,  { }  

true,  { x} , a, 

x= 10 ,  { }  

true, { y} , b, 

y= 12,  { }  

s 

 
 

Figure 1: Concurrent actions a and b. 
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Another point is that concerning event-recording 

automata. It is the case where one has several actions of 

the same name complying in parallel (auto-

concurrency). Those must share by definition only one 

clock, which puts some difficulties in expressing such 

cases. To make out closely this problem, let us consider 

the example in which two concurrent actions have the 

same name a and the same duration 5. In the event-

recording automaton of Figure 2, the clock xa 

corresponds to action a. This association defined in the 

beginning between xa and a prevents the expression of 

auto-concurrency if an action starts its execution 

whereas the other did not finish yet. In other words, one 

clock cannot inform us about the evolution of each 

action since we lose any information on the execution 

of an action a just after the launching of another of the 

same name. 

 
 

a↑ a↑ 

a↓, xa =5? 

a↑ 

a↓, xa =5? 

a↑ 

a↓, xa =5? 

a↓, xa =5? 

a↑ 

a↓, xa =5? a↓, xa =5? 

a↑ 

Clock xa is reset 

automatically 
No information on 

the origin of xa 

 
 

Figure 2: Auto-concurrency in event-recording automata. 

 
 

s0 s1 s2 

a a  

s0 s1 s2 

∅ax 

{x} 
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{x,y} ∅ 
∅ay 

s0 s1 s2 

∅ax 

{x} 

(c) 

{x} ∅ 
{x}ax 

 
Figure 3: Maximality semantics. 

 

A second alternative to express non-atomic actions is 

to avoid splitting actions. It consists in using true-

concurrency semantics like the maximality semantics 

[17,18]. To implement such semantics, Maximal Trees 

and Maximality-based Labeled Transition Systems 

(MLTSs) have been defined [16,28] and used in work 

relating to the specification and the verification of 

reactive systems [5,29,30,32]. To have an idea of the 

maximality semantics, consider the Basic LOTOS [7] 

behavior expression E=a;stop ||| a;stop representing the 

concurrent execution of two actions with the same name 

a. Figure 3.(a) gives the labeled transition system 

obtained by the interleaving semantics. This transition 

system is exactly the same of the expression F=a;a;stop 

representing the sequential execution of two actions a. 

The application of the maximality-based operational 

semantics for Basic LOTOS language produces the 

transition system of Figure 3.(b) [16,28]. x and y are 

events identifying respectively the first start and the 

second start of the action a. In state s0, no action is 

complying, which is denoted by an empty set. The set 

{x} in state s1 indicates that the occurrence of a 

identified by x is possibly in execution (the duration is 

implicit). The set {x,y} in state s2 stipulates that the two 

runs of the action a can take place simultaneously. All 

of this could be expressed by considering each 

transition labeled by a of the MLTS as only the start of 

the action a. 

The completion of an action is identified implicitly 

when another one starts and this latter awaits the 

completion of the first action. We can observe this in 

the case of the behavior expression F=a;a;stop in 

which the completion of the first action a is detected 

implicitly as soon as the second action a starts. In 

Figure 3.(c) representing the behavior of F, from the 

state s1, the second action a can only start after the 

completion of first action a. This information is 

expressed by the event x, identifying the start of the first 

action a, present in brackets at the level of the second 

transition, i.e. the event x is bound to the first transition. 

Once the first action finishes its execution, the event x 

becomes free at the level of the second transition. Thus, 

the start of the second a may be identified by x since the 

first action a has finished its execution. 

Maximality semantics has been also adopted for the 

real-time language D-LOTOS [31] which is very close 

syntactically to ET-LOTOS. D-LOTOS extends Basic 

LOTOS with timing constraints and urgency 

constraints, in addition to a function giving to each 

action a duration. The syntax of D-LOTOS is defined as 

follows: 

E ::= stop | exit{d} | ∆d
E | X[L] | g@t[SP];E | i@t{d};E 

 | E[]E | E|[L]|E  | hide L in E | E>>E | E[>E 

 

Let a be an action (observable or internal), E a 

behavior expression and d∈D a value in a countable 

time domain (for example, D is Q+). Intuitively, a{d} 

means that the action a must start its execution in the 

temporal domain [0,d]. ∆d
E means that no evolution of 

E is allowed before a time delay equal to d. In 

g@t[SP];E (resp. i@t{d};E), t stores the time passed 

since the enabling of the action g (respectively i) and 

which will be substituted by zero when this action 

finishes its execution. 

In [5], action duration has been explicitly taken into 

account; this led to the definition of Durational Action 

Timed Automata (DATA's) semantic model. Translating 

rules of DATA's have been proposed for Basic LOTOS 

specification language extended with a function which 

assigns a duration to each action. Explicit timing 

constraints are not taken into account in DATA's model. 

The question is how to give semantics to real-time 

specification languages which support explicit actions 

duration like D-LOTOS. 

This work extends DATA's model in order to take 

into account timing constraints and urgency constraints 

present in real-time systems. The following section 

introduces and defines formally DATA*'s model for the 

specification of real-time systems. Translating rules to 

this extension (DATA*'s) are given for D-LOTOS 

language in Section 2. Some discussions on related 

work are exposed in Section 3. 
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2. DATA*’s MODEL 
DATA's model was introduced with an aim of 

expressing temporal and structural non-atomicity of 

actions. The idea to model (not necessarily null) 

durations associated with actions can be inspired by the 

maximality semantics in which a transition represents 

the start of an action. In the resulting state one says that 

the action is possibly complying, no conclusion can be 

drawn with regard to its completion; however, this 

information can be deduced in a later state in which an 

action which is dependent to the first one is executed. 

The association of explicit durations to actions will 

enable us to express the beginning and the end of 

execution of actions. 

To get an idea of DATA's structures, consider the 

example of a system P which consists on two 

concurrent processes P1 and P2 synchronizing on an 

action d. The process P1 executes the action a followed 

by d, while P2 executes b then d, and suppose that 

actions a, b and d have respective durations 10, 12 and 

4. The behavior of P is given by the DATA of Figure 

4.(a). Since we can have the case where a and b comply 

at the same time, we will assign to each one a clock, x 

and y respectively, to distinguish their occurrences. 

Therefore, starting from state s0, the two following 

transitions are possible: 
1

0:,

0 ss
xa =

→  and 
2

0:,

0 ss
yb =

→ . A 

transition labeled with a indicates the start of the action 

a, the associated clock counts the evolution in the time 

of this action. Following the same reasoning, the two 

following transitions are possible: 3

0:,

1 ss
yb =

→
 and 

3

0:,

2 ss
xa =

→
. 

Starting from state s3, the action d can obviously 

comply only if the two actions a and b finished their 

execution. Therefore, the transition d can be drawn only 

if a condition relating to the executions of a and b is 

satisfied. This condition, called duration condition, is 

built according to the durations of a and b. Initially, we 

show the construction of duration conditions for s0, s1 

and s2 before that of s3. After launching the transition 

1

0:,

0 ss
xa =

→ , we need information on the possible execution 

of the action a in state s1. One is sure that the action a 

finishes its execution when the corresponding clock x 

reaches 10, therefore, one adds to state s1 the duration 

condition of a, {x≥10}, which expresses that if the value 

of x is higher or equal to 10 then one is sure that the 

action finished execution. The same thing for the state 

s2 which will be labeled by {y≥12}. In state s0, no action 

is complying, which implies that duration conditions set 

is empty. In the state s3, actions a and b can comply in 

parallel, and each one can finish only if its clock 

reaches a value equal to its duration. From where 

duration conditions set {x≥10,y≥12}. The execution 

condition of the action d becomes x≥10∧y≥12. Once 

this latter satisfied, d can start at any time in the 

enabling open interval x∈[10,+∞[,y∈[12,+∞[, the so-

called enabling domain. In state s3, duration condition 

of actions a and b implies the possibility of their 

parallel evolutions. 

In general, real-time systems cannot be completely 

specified if one does not regard concepts as urgency, 

deadlines, constraints, etc. To take into account these 

new concepts, we need to pass towards the DATA*'s 

model that we introduce in this section. 

 

2.1. INTRODUCTION OF TIMING 

CONSTRAINTS 
The type of constraints which we want to express is that 

implying restrictions on the enabling domain. In a 

context of real-time systems, these restrictions cannot 

be due solely to the durations of former actions, 

forming so open time domains as for x≥10∧y≥12, but 

can limit enabling domains regardless of the durations 

of other actions by delaying for example an action of a 

certain quantity of time or by limiting the time during 

which an action is offered to its environment (temporal 

restriction). 
 

s0 

s1 s2 

a, x b, y 

s3 

b, y a, x 

s4 

d, z 

{x ≥10} 

{x ≥10, y ≥12} 

{∅} 

10 ≤ x ≤15 ∧ 

12 ≤ y ≤16 

{z ≥4} 

c∅ ≤ 3 c∅ ≤ 4 

c∅ ≤ 4 c∅ ≤ 3 

s0 

s1 

a, x 

{∅} 

G={3 ≤ c∅ ≤ 3} 

D={3 ≤ c∅ ≤ 3} 

{x ≥ 7} 

(b) 

(c) 

s0 

s1 s2 

a, x :=0 b, y :=0 

s3 

b, y :=0 a, x :=0 

s4 

d, z :=0 

{x ≥10} {y ≥12} 

{x ≥10, y ≥12} 

{∅} 

x ≥10 ∧ y ≥12 

{z ≥4} 

(a) 

 
Figure 4: P behavior in term of DATA and DATA*. 

 
Thus, let us suppose that the action a can start only 

in the first three units of time, i.e. in the domain [0,3]. 

An action can possibly start if the value of a certain 

clock belongs to its enabling domain. Action a can start 

only if a particular clock did not reach value 3 yet. This 

clock is initialized at the enabling moment of the system 

P (i.e. at time 0). Given that the action a does not await 

the end of any other action, let this clock be c∅. 

Consequently, the transition a in the resulting DATA* 

will be labeled by the constraint c∅≤3 (i.e. c∅∈[0,3]). 

This constraint, called guard, will have to be satisfied 

so that the action a can comply. If moreover, a is 

delayed by a lapse of time equal to 1 (as makes the 

operator ∆d
 of D-LOTOS), the guard on transition a will 

be 1≤c∅≤4 (i.e. c∅∈[0+1,3+1]). 

The same reasoning can be applied on the other 

actions. By admitting that actions a and b of the system 

P are enabled for respectively 3 and 4 units of time, and 

that the action d is enabled in the process P1 (resp. P2) 

in the first 5 (resp. 4) units of time, the global behavior 

of P is represented by the DATA* of Figure 4.(b). 

From state s3 of Figure 4.(b), P1 and P2 can be 

synchronized on action d provided that actions a and b 
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finished their executions. The start of d is conditioned 

by the constraint over the durations of a and b: 

x≥10∧y≥12, and in addition by the temporal restriction 

of the enabling domain of action d by 5 and 4 units of 

time respectively according to the source of d (from P1 

or P2). Action d coming from P1 awaits the completion 

of a (which has x as clock), i.e. it waits for reaching 

value 10 by clock x. Once this value reached, the expiry 

time of the offer of action d of P1 starts, and finishes 

after 5 units of time, i.e. after x reaches value 15. 

Therefore, the enabling domain of this action is x∈ 

[10,15]. The same thing for the other action d having as 

enabling domain y∈[12,16].
1
 

 

2.2. EXPRESSING URGENCY 
We noted that the new model of DATA*'s is able to 

express timing constraints due to restrictions on the 

enabling domain of an action. Let us observe at present 

the expression of urgent actions in this model. An 

urgent action must comply as soon as it is enabled, 

while time progression is stopped. 

It is necessary to distinguish between urgent actions 

and actions whose enabling domain is made of only one 

moment in time. Let us consider the example of an 

action a with duration 7 and having as enabling domain 

x∈[3,3]. This action can comply only if clock x reached 

the value 3; beyond this domain (for example in the 

case of a refusal of the environment), action a cannot 

comply any more. If on the other hand, a is an urgent 

action having always as enabling domain x∈[3,3], once 

x is equal to 3, time progression is stopped until a starts. 

Therefore, the urgency domain of a is x∈[3,3]. By 

considering the assumption of time monotonicity, at the 

moment of satisfaction of the condition corresponding 

to the urgency domain of an action, the latter must 

occur immediately. 

In our example, the domain x∈[3,3] indicates at once 

enabling domain and urgency domain except that its 

semantics differs in the two contexts. This observation 

lets us to introduce the urgency domain at the level of 

DATA*'s transitions. Thus, all transitions will be 

labeled in addition to the enabling constraint G (for 

guard) by the urgency constraint D (for deadline). In 

the case of system P behavior represented by Figure 

4.(b), all the transitions will be labeled by D={false} 

because of the absence of urgent actions. The urgency 

constraint D can be hidden without any ambiguity if 

D={false}. 

The behavior of the preceding example in which the 

action a is urgent is illustrated by Figure 4.(c). The 

clock c∅ is used instead of x if a is the first action which 

the system can execute, which is indeed the case in our 

example. In fact, clock x will be associated to action a, 

the constraint over the duration of a placed on the state 

s1 is written thus according to x. 

                                                 
1
 x∈[min,max], min≤x≤max, x≥min∧x≤max or {x≥min,x≤max} 

means the same thing. The purpose of this remark is to ensure that the 

functions on domains, which will be thereafter defined, can be applied 

on all preceding forms of domains, even if they will be explicitly 
defined by using only one form. 

Note that the actions may be eager, delayable or lazy 

as in Bornot et. al model [9]. An action is eager when 

one has D=G in the corresponding transition, delayable 

if D=∨(min~i~max)∈G (i=max) with ~∈{<,≤}, and lazy if 

D={false}. 

 

2.3. FORMALIZATION 
Definition 2.1: Let H, ranged over x, y... be a set of 

clocks with nonnegative values (in a time domain T, 

like Q
+
 or R

+
). The set Φt(H) of temporal constraints γ 

over H is defined by the syntax γ::=x∼t, where x is a 

clock in H, ∼∈{=,<,>,≤,≥} and t∈Q+
. Fx will be used to 

indicate a constraint of the form x∼t. A valuation (or 

interpretation) v for H is a function which associates to 

each x∈H a value in T. One says that a valuation v for 

H satisfies a temporal constraint γ over H iff γ is true by 

using clock values given by v. For I⊆H, [I→0]v 

indicates the valuation for H which assigns value 0 to 

each x∈I, and agrees with v over the other clocks of H. 

The set of all valuations for H is noted Ξ(H). The 

satisfaction relation |= for temporal constraints is 

defined over the set of valuations for H, by v|=x∼t ⇔ 

v(x)∼t such as v∈Ξ(H). 2
T

fn is used to note the set of 

finite subsets of a set T.  

Definition 2.2: A DATA* A is a tuple (S,LS,s0,H,T) 

where: 

1. S is a finite set of states, 

2. 
L S : S � 2 fn

�t�H �

 is a function which corresponds 

to each state s the set F of ending conditions 

(duration conditions) of actions possibly in 

execution in s, 

3. s0∈S is the initial state, 

4. H is a finite set of clocks, and 

5. T⊆S×
� 2 fn

�t�H �

×
� 2 fn

�t�H �

×Act×H×S is the set of 

transitions. A transition (s,G,D,a,x,s’) represents 

switch from state s to state s’, by starting 

execution of action a and resetting clock x. G is 

the corresponding guard which must be satisfied to 

fire this transition. D is the corresponding deadline 

which requires, at the moment of its satisfaction, 

that action a must occur. (s,G,D,a,x,s’) can be 

written s
G,D,a,x

s�.  

Definition 2.3: The semantics of a DATA* 

A=(S,LS,s0,H,T) is defined by associating to it an infinite 

transitions system SA over Act∪T. A state of SA (or 

configuration) is a pair <s,v> such as s is a state of A 

and v is a valuation for H. A configuration <s0,v0> is 

initial if s0 is the initial state of A and ∀x∈H, v0(x)=0. 

Two types of transitions between SA configurations are 

possible, and which correspond respectively to time 

passing (rule RA*) and the launching of a transition 

from A (rule RD*). 

�RA*�
d�R� �d�	d, v�d�
D

s,v�
d

s,v�d�

�RD*�
s,G,D,a,x,s� �T v�G

s,v�
a

 s�,��x��0�v

  
According to the maximality semantics, the label a 

in RD* rule implies the start of the action a and not the 
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whole execution of a. In RA* rule, D=� i�I
Di  where 

��s,G i,Di,a i,x i, si��i�I  is the set of all transitions 

stemming from state s. Indeed, whenever a Di holds, 

time cannot progress regardless of the other Di. The 

function LS, which gives the duration conditions at the 

level of a state is useful to construct timing and urgency 

constraints. By construction, if Di or Gi are true then 

causal actions have finished their executions. The use of 

LS will be shown afterwards in translating process 

between D-LOTOS expressions and DATA*'s 

structures in Section 3. 

Note that if one wants to guarantee that at least a 

transition could be drawn starting from a state if time 

cannot progress any more within this state, one requires 

that the formula Di(Gi be satisfied. Let us 

observe another problem in which an action a 

must be drawn as soon as possible at one 

moment higher strictly than 1 (i.e. in the 

interval ]1,+([). This moment cannot 

obviously be known, which lets us require that 

urgency domains do not have to be left open. 

REMARK 2.1: URGENCY DOMAINS 

ARE ALWAYS LEFT CLOSED, I.E. 

THEY ARE ON THE FORM [.] OR [.[. 

 

3. Operational construction of DATA*'s 

The approach of generating DATA*'s from D-

LOTOS expressions is very close with that of 

[16,28] for the generation of MLTS structures 

from Basic LOTOS expressions. From now 

on, the set M of maximal events will be used 

to indicate the set of clocks. This is justified 

by the dynamic choice of clocks 

corresponding to the occurrence of events. To 

formalize generation process, functions (, \ and 

the substitution one introduced in [16,28] 

spread directly on the configurations relating 

to DATA*'s states. Configurations 

corresponding to DATA*'s states belong to the 

set C*. The function ( of extraction of the 

maximal events set from a configuration is 

redefined on C* in the same way in order to 

specify used clocks in a DATA* 
�configuration, except that the equation  is 

� �replaced by , with  given by Definition 3.1. 

Definition 3.1: The function 
�H : 2fn

�t�H�� 2fn
H

, which 

determine the set of used clocks in a duration conditions 

set, is defined recursively by: 

�H�����

�H��x � t����x�

�H�F1 �F2���H�F1���H�F2�
 

such as 

F1 , F2 � 2fn

�t�H�, x � H ,�� ��,	,�,�,��and t � Q�
  

In order to determine duration conditions set of a 

configuration C*, we use the function 

 
If E is a DATA configuration; E\K, which indicates 

the configuration obtained by the suppression of the set 

K of duration conditions written according to clocks 

used by the set F of E remains the same one, except the 

equation (F[E])\K=F\K[E] which replaces (M[E])\N 

=M-N[E], with F\K given in Definition 3.2. 

Definition 3.2: Let F be an ending conditions set; F\K 

indicates the set obtained by the suppression, starting 

from F, of all the duration conditions written according 

to the clocks of K (K⊆H). F\K is recursively defined on 

F as follows: 

�\K ��

�F1 �F2�\K �F1 \K �F2 \K

�x � t�\K �
� if x � K

�x � t� otherwise

 
such as 

F1 ,F2 � 2 fn

�t�H�, K �H , x � H ,�� ��,	,�,�,��and t � Q�
 

  
Simultaneous substitution remains unchanged aside 

from the equation (M[E])σ=Mσ[E] which will be replaced 

by (F[E])σ=Fσ[E]. If x,y∈H and 
F � 2fn

�t�H�

 then 

F���F i�F
�F i  with {x∼t}σ={σ(x)∼t}, and σ is the 

substitution function given in [16,28]. 

The specification of delays and timing constraints 

requires the definition of a function shift(G,t) dealing 

with the move of a temporal domain by a time t, i.e. 

shift�G, t�
déf
���min �t � i �max �t�|�min � i �max��� G  

with ~∈{<,≤}. 

In order to restrict a temporal domain on its upper 

bound, we use function maxval(G) 
déf
� �
�min�i�max��G

�i �max�

 with ~∈{<,≤}. 

Definition 3.3: The transition relation of DATA*'s 

C*×
� 2 fn

�t�H �

×
� 2 fn

�t�H �

×Act×H×C* is defined as being the 

smallest relation satisfying the following rules: 

 

 

φ DC : C * ÷ 2 fn
→t⇑H ⇒ 

.
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such as, c∅ is a particular clock which is created and 

initialized at the enabling time of the system, and D is 

the underlying countable time domain for D-LOTOS 

language.  

Notation 3.1: We have chosen the following notation: 

For the observable actions, we have 

• a@t[t≤d];E=a{d};E (the selection predicate SP 

of the form t≤d is replaced by a temporal 

restriction), with t not free in E. 

• a@t[d≤t≤d′];E=∆
d
a{d′-d};E, with d≤d′ and t is 

not free in E. 

If i is a non observable action, then 

• i@t{0};E=i@t;E (If {d} is omitted, then d=0). 

• i@t{d};E=i{d};E if t is not free in E. 
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By convention, if the enabling domain {d} is omitted 

in a{d};E, then d=∞. In the same way, if SP is omitted, 

then SP=true. If the deadline constraint D is omitted 

in any transition, then D={false}.  

For the sake of presentation, we focus our 

explanation only on rules 1, 2, 3 and 4 which give the 

main idea of the operational semantics. The meaning of 

the other rules should be easy after explanations below. 

In rules 1a and 2a, an action offered in a lapse of 

time equal to u and depending on the end of no other 

one can comply provided that the value of clock c∅ does 

not exceed the u value. If the start of an action a 

depends on the end of at least another action, the 

enabling constraint G is built on the one hand starting 

from durations of clocks corresponding to actions of 

which a depends, and on the other hand by the offer 

interval u of a, which is expressed by the rules 1b and 

2b. 

In rules 1a, 1b, 2a and 2b of Definition 3.3, all 

actions are not urgent, which explains why the 

constraints D are always put at false. 

Rules 3a and 3b express the firing of an internal 

action. This action becomes urgent at the end of 

enabling lapse of time d. In these rules, the urgency 

constraint D is built starting from enabling constraint G. 

As we already mentioned, the semantics of the two 

constraints differs: at the moment of satisfaction of D, 

the action must be launched. The same reasoning will 

be applied to hidden actions where the urgency is 

expressed through the rule 7b. 

We will explain the use of operator @ through D-

LOTOS expression E=a@t1[t1≤3]; b@t2[t2≤t1]; stop. 

Let us suppose that the respective durations of a and b 

are 20 and 7. As soon as the expression a@t1[t1≤3];F 

is equivalent to a{3};[d/t1]F (d is the interval between 

the enabling and the end of execution of a), and the start 

of action a does not depend on the end of any other 

action, we will just substitute the variable t1 on the level 

of the predicate t1≤3 by the clock c∅ to have the 

enabling constraint c∅≤3. In the remaining expression 

b@t2[t2≤t1];stop, all free occurrences of variable t1 

receive the lapse of time between the enabling (c∅=0) 

and the end of execution of a (current value of c∅, 

which will be noted val(c∅), plus the duration of a, 

τ(a)). Therefore, this interval is equal to val(c∅)+τ(a)-0 

= val(c∅)+τ(a). It is expressed by the rule 4a. The 

following transition becomes possible: 

 
In the configuration config1, enabling domain of b is 

t2∈[0,val(c∅)+20], and as the action b depends on the 

end of a which lasts 20 units of time and which has x as 

clock, enabling domain of b becomes 

x∈[0+20,val(c∅)+20+20]. Generally speaking, if one 

has several clocks in duration constraint F (given by LS 

function) of the source configuration, the shift of the 

interval implies all these clocks, which is expressed by 

the rule 4b. In our example, enabling constraint of b 

only implies clock x with a shift of 20 units of time. The 

following transition becomes possible: 

 
Now, if instead of stop we have the expression 

c@t3[t3≤t1+t2];stop (i.e. the expression E becomes 

a@t1[t1≤3];b@t2[t2≤t1];c@t3[t3≤t1+t2];stop), with c 

of duration 18, the transition representing the beginning 

of execution of c will be guarded by the domain 

x � 0,

t1

val�c���20 �

t2

val�x��7�20

, shifted by 7 units, i.e. 

7 �x �

t1

val�c���20 �

t2

val�x��7�20 �7

. In other words, t1 

always contains the value val(c∅)+20, while the variable 

t2 contains val(x)+7-20 because the action b is enabled 

when x=20, and the end of execution of b is stored in 

start of b

val�x��

 �b�
!

7

. In a more general way, if the transition b 

is guarded by a constraint built of several clocks such as 

x∈[minx,maxx]∧y∈[miny,maxy]∧..., the value of t2 in the 

remaining expression c@t3[t3≤t1+t2];stop can be 

expressed using only one clock among {x,y,…}, such as 

j, since the lapses of time are equal regardless of time 

scale (i.e. val(x)+7-20=val(y)+7-d1=val(z)+7-d2=… and 

d1,d2,…∈D). This is expressed by the rule 4b, hence 

the following transition: 

 
Regarding the use of the operator @ with internal 

actions, the rules 3a and 3b will be applied in the same 

way on expression i@t{d};E with t not free in E. 

The rule 8 relates to delaying an action a with a 

certain quantity of time d. One can notes that if the 

delaying operator ∆ is applied to a configuration E, only 

the first action drawn from the configuration E will be 

delayed. 

Remark 3.1: Without loss of generality, we used D-

LOTOS language in which actions durations are fixed 

once and for all at the enabling moment of the system. 

The case where actions have durations chosen from an 

interval [m,M] is not considered. 

 

4. DISCUSSION 
The study of timed automata and timed automata with 

non-instantaneous actions models showed us that the 

state space combinatorial explosion problem and the 

difficulty of expressing certain parallel behaviors are 

respectively inherent in the structure of each one of 

these models. The DATA*'s model enabled us to 

overcome each one of these problems. 
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In dynamic timed automata [13,22], the automaton is 

known as dynamic because clocks number can vary 

from a state to another. Note that DATA*'s model, in 

addition to its aptitude to take into account non-atomic 

actions, allows the use of dynamic clocks of which 

construction is done in one step by, in our case, the 

function get. However, in DTA's, clocks construction is 

made in two steps [13], the first one is mainly intended 

to build a virtual clock for each concurrent component 

of the RT-LOTOS specification, while the second one is 

devoted to the mapping between these virtual clocks 

and current clocks of the generated DTA. 

Now, regarding the class of updatable timed 

automata [10,11,12], and given that the transitions 

between DATA*'s states imply an automatic reset of the 

corresponding clocks, some behaviors expressed by 

updatable timed automata could not be expressed using 

a DATA*. To specify protocols based on updates as 

ABR (Available Bit Rate [6]), an alternative consists in 

modeling updates by the use of more general operations 

on variables, as it is implemented in HYTECH tool [19]. 

We can deduce that a theoretical comparison 

between DATA*'s model and the existing ones would 

be of a capital significance to be able to surround the 

least expressive model but most sufficient to meet the 

needs of real-time applications with durations 

associated with actions. 

 

5. CONCLUSION AND PERSPECTIVE 
This paper proposes a real-time extension to DATA's 

model which is very near syntactically to timed 

automata, taking into account structural and temporal 

non-atomicity of actions, timing constraints and 

urgency. The goal has been to define a semantic model 

which makes more natural expressing concurrent and 

parallel behaviors of real-time systems. The idea is 

based on the principle of the maximality semantics in 

which only the starts of actions are modeled; ends of 

execution are captured by the corresponding durations. 

As perspective, we hope that additional information 

in maximality-based labeled transition systems can 

allow us reducing the number of states and transitions in 

the graph without loss of information, and then escaping 

from the explosion of the underlying graph. For 

instance, the concurrency of two actions may be 

expressed as . Work in this direction 

can be found in [23,27,34,35]. This should spread over 

DATA*'s model. 

Regarding formal verification of real-time systems, 

we think that we can adapt model checking algorithms 

by taking as semantic model DATA*'s structures. This 

can express, as for MLTS model [30,33], desired 

properties in a more natural way reasoning directly on 

actions. 
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