
The 2006 International Arab Conference on Information Technology (ACIT'2006)

Actions Duration in Timed Models

Djamel Eddine Saïdouni and Nabil Belala

LIRE Laboratory, University of Mentouri, 25000 Constantine, Algeria

saidounid@hotmail.com, nbelala@gmail.com

ABSTRACT

This paper introduces a real-time model based on a

true-concurrency semantics, expressing parallel

behaviors and supporting at the same time timing

constraints, explicit actions durations, structural and

temporal non-atomicity of actions and urgency. This

model is called Durational Action Timed Automata*. As

an application, we propose translating rules from D-

LOTOS language specifications to DATA*'s structures.

Keywords: Real-time systems, Actions duration,

 Maximality-based semantics, DATA*’s

1. INTRODUCTION
Specification of real-time systems is a quite difficult

process since these systems are known to be complex

and critical. Formal models are usually used to specify

behaviors and verify some expected properties; one can

cite timed extensions of Petri nets [24,26], process

algebras as TCCS, ET-LOTOS, RT-LOTOS, D-LOTOS

[14,15,21,25,31] and state-transition models like timed

automata [1,2] which extend state-transition graphs

with timing constraints using a set of real-valued clocks.

In this context, many questions have been raised and

studied in the literature; an important one is how to give

semantics to a specification model to be able to express

concurrent and parallel behaviors in a natural way, i.e.

to distinguish between sequential and parallel runs of

actions. This is not the case of the interleaving

semantics: to use this latter advisedly, actions must be

temporally and structurally atomic (actions are

indivisible and of null duration).

Another question concerns the expression of non-

null duration actions. To do this, most of works

consider actions as two instantaneous events: their start

and their completion, in addition to the wait between

these events. Although this approach seems to be

attractive, it may contribute toward graph explosion in

state-transition models. Timed automata model and

most of their sub-classes and extensions opt for splitting

actions up into start and completion events. Among

timed automata sub-classes, we can quote Timed Safety

Automata [20] in which a state of an automaton can

contain local timing clock constraint called invariant,

Event-Recording Automata [3] in which a

corresponding clock xa is reset automatically with each

occurrence of an action a, Dynamic Timed Automata

[13,22] including a set of clocks no longer global in all

the system but local in each automaton state, Timed

Automata with Deadlines of [8,9] allowing the

expression of urgency at the level of transitions by a

left-closed deadline constraints, and Updatable Timed

Automata [10,11,12] which are more expressive than

original timed automata and allow, besides clock reset,

assigning non-null values to clocks.

By taking these models in consideration, we will

show some points that may lead to difficulties in

expressing non-null duration actions as well as

concurrent and parallel behaviors. The first is certainly

splitting actions up into start and completion events that

is inherent to these models. To get round the posed

problem of graph explosion, an alternative consists in

representing actions of non-null duration as non-

instantaneous transitions, following the example of

timed automata with non-instantaneous actions model

[4]. According to the semantics of this latter, transitions

are indivisible requiring that actions are structurally

atomic, which prevents the execution of parallel actions.

To observe clearly, consider the example of a process P

executing two concurrent actions a and b. If the

respective durations of a and b are 10 and 12 units of

time, the underlying behavior can be expressed, as

shown in Figure 1, by respectively a labeled transitions

system, a timed automaton or a timed automaton with

non-instantaneous actions. a↑ and a↓ express

respectively the start and the completion of an action a.

When actions a and b are of non-null duration, their

simultaneous execution is included implicitly in the

state s in the timed automaton of Figure 1.(b). This

information is lost in Figure 1.(c) because of structural

atomicity of actions.

(c)

a↑, x:=0 b↑, y :=0

a↑, x:=0

a↓, x =10?

a↑, x:=0

b↓, y =12?

a↓, x =10?

b↑, y :=0

b↓, y =12? a↓, x =10?

b↑, y :=0
b a

a b

P

P

(a) (b)

true, { x} , a ,
x= 10, { }

P

true, { y } , b,
y= 12, { }

true, { x} , a,

x= 10 , { }

true, { y} , b,

y= 12, { }

s

Figure 1: Concurrent actions a and b.

The 2006 International Arab Conference on Information Technology (ACIT'2006)

Another point is that concerning event-recording

automata. It is the case where one has several actions of

the same name complying in parallel (auto-

concurrency). Those must share by definition only one

clock, which puts some difficulties in expressing such

cases. To make out closely this problem, let us consider

the example in which two concurrent actions have the

same name a and the same duration 5. In the event-

recording automaton of Figure 2, the clock xa

corresponds to action a. This association defined in the

beginning between xa and a prevents the expression of

auto-concurrency if an action starts its execution

whereas the other did not finish yet. In other words, one

clock cannot inform us about the evolution of each

action since we lose any information on the execution

of an action a just after the launching of another of the

same name.

a↑ a↑

a↓, xa =5?

a↑

a↓, xa =5?

a↑

a↓, xa =5?

a↓, xa =5?

a↑

a↓, xa =5? a↓, xa =5?

a↑

Clock xa is reset

automatically
No information on

the origin of xa

Figure 2: Auto-concurrency in event-recording automata.

s0 s1 s2

a a

s0 s1 s2

∅ax

{x}

(a) (b)

{x,y} ∅
∅ay

s0 s1 s2

∅ax

{x}

(c)

{x} ∅
{x}ax

Figure 3: Maximality semantics.

A second alternative to express non-atomic actions is

to avoid splitting actions. It consists in using true-

concurrency semantics like the maximality semantics

[17,18]. To implement such semantics, Maximal Trees

and Maximality-based Labeled Transition Systems

(MLTSs) have been defined [16,28] and used in work

relating to the specification and the verification of

reactive systems [5,29,30,32]. To have an idea of the

maximality semantics, consider the Basic LOTOS [7]

behavior expression E=a;stop ||| a;stop representing the

concurrent execution of two actions with the same name

a. Figure 3.(a) gives the labeled transition system

obtained by the interleaving semantics. This transition

system is exactly the same of the expression F=a;a;stop

representing the sequential execution of two actions a.

The application of the maximality-based operational

semantics for Basic LOTOS language produces the

transition system of Figure 3.(b) [16,28]. x and y are

events identifying respectively the first start and the

second start of the action a. In state s0, no action is

complying, which is denoted by an empty set. The set

{x} in state s1 indicates that the occurrence of a

identified by x is possibly in execution (the duration is

implicit). The set {x,y} in state s2 stipulates that the two

runs of the action a can take place simultaneously. All

of this could be expressed by considering each

transition labeled by a of the MLTS as only the start of

the action a.

The completion of an action is identified implicitly

when another one starts and this latter awaits the

completion of the first action. We can observe this in

the case of the behavior expression F=a;a;stop in

which the completion of the first action a is detected

implicitly as soon as the second action a starts. In

Figure 3.(c) representing the behavior of F, from the

state s1, the second action a can only start after the

completion of first action a. This information is

expressed by the event x, identifying the start of the first

action a, present in brackets at the level of the second

transition, i.e. the event x is bound to the first transition.

Once the first action finishes its execution, the event x

becomes free at the level of the second transition. Thus,

the start of the second a may be identified by x since the

first action a has finished its execution.

Maximality semantics has been also adopted for the

real-time language D-LOTOS [31] which is very close

syntactically to ET-LOTOS. D-LOTOS extends Basic

LOTOS with timing constraints and urgency

constraints, in addition to a function giving to each

action a duration. The syntax of D-LOTOS is defined as

follows:

E ::= stop | exit{d} | ∆d
E | X[L] | g@t[SP];E | i@t{d};E

 | E[]E | E|[L]|E | hide L in E | E>>E | E[>E

Let a be an action (observable or internal), E a

behavior expression and d∈D a value in a countable

time domain (for example, D is Q+). Intuitively, a{d}

means that the action a must start its execution in the

temporal domain [0,d]. ∆d
E means that no evolution of

E is allowed before a time delay equal to d. In

g@t[SP];E (resp. i@t{d};E), t stores the time passed

since the enabling of the action g (respectively i) and

which will be substituted by zero when this action

finishes its execution.

In [5], action duration has been explicitly taken into

account; this led to the definition of Durational Action

Timed Automata (DATA's) semantic model. Translating

rules of DATA's have been proposed for Basic LOTOS

specification language extended with a function which

assigns a duration to each action. Explicit timing

constraints are not taken into account in DATA's model.

The question is how to give semantics to real-time

specification languages which support explicit actions

duration like D-LOTOS.

This work extends DATA's model in order to take

into account timing constraints and urgency constraints

present in real-time systems. The following section

introduces and defines formally DATA*'s model for the

specification of real-time systems. Translating rules to

this extension (DATA*'s) are given for D-LOTOS

language in Section 2. Some discussions on related

work are exposed in Section 3.

The 2006 International Arab Conference on Information Technology (ACIT'2006)

2. DATA*’s MODEL
DATA's model was introduced with an aim of

expressing temporal and structural non-atomicity of

actions. The idea to model (not necessarily null)

durations associated with actions can be inspired by the

maximality semantics in which a transition represents

the start of an action. In the resulting state one says that

the action is possibly complying, no conclusion can be

drawn with regard to its completion; however, this

information can be deduced in a later state in which an

action which is dependent to the first one is executed.

The association of explicit durations to actions will

enable us to express the beginning and the end of

execution of actions.

To get an idea of DATA's structures, consider the

example of a system P which consists on two

concurrent processes P1 and P2 synchronizing on an

action d. The process P1 executes the action a followed

by d, while P2 executes b then d, and suppose that

actions a, b and d have respective durations 10, 12 and

4. The behavior of P is given by the DATA of Figure

4.(a). Since we can have the case where a and b comply

at the same time, we will assign to each one a clock, x

and y respectively, to distinguish their occurrences.

Therefore, starting from state s0, the two following

transitions are possible:
1

0:,

0 ss
xa =

→ and
2

0:,

0 ss
yb =

→ . A

transition labeled with a indicates the start of the action

a, the associated clock counts the evolution in the time

of this action. Following the same reasoning, the two

following transitions are possible: 3

0:,

1 ss
yb =

→
 and

3

0:,

2 ss
xa =

→
.

Starting from state s3, the action d can obviously

comply only if the two actions a and b finished their

execution. Therefore, the transition d can be drawn only

if a condition relating to the executions of a and b is

satisfied. This condition, called duration condition, is

built according to the durations of a and b. Initially, we

show the construction of duration conditions for s0, s1

and s2 before that of s3. After launching the transition

1

0:,

0 ss
xa =

→ , we need information on the possible execution

of the action a in state s1. One is sure that the action a

finishes its execution when the corresponding clock x

reaches 10, therefore, one adds to state s1 the duration

condition of a, {x≥10}, which expresses that if the value

of x is higher or equal to 10 then one is sure that the

action finished execution. The same thing for the state

s2 which will be labeled by {y≥12}. In state s0, no action

is complying, which implies that duration conditions set

is empty. In the state s3, actions a and b can comply in

parallel, and each one can finish only if its clock

reaches a value equal to its duration. From where

duration conditions set {x≥10,y≥12}. The execution

condition of the action d becomes x≥10∧y≥12. Once

this latter satisfied, d can start at any time in the

enabling open interval x∈[10,+∞[,y∈[12,+∞[, the so-

called enabling domain. In state s3, duration condition

of actions a and b implies the possibility of their

parallel evolutions.

In general, real-time systems cannot be completely

specified if one does not regard concepts as urgency,

deadlines, constraints, etc. To take into account these

new concepts, we need to pass towards the DATA*'s

model that we introduce in this section.

2.1. INTRODUCTION OF TIMING

CONSTRAINTS
The type of constraints which we want to express is that

implying restrictions on the enabling domain. In a

context of real-time systems, these restrictions cannot

be due solely to the durations of former actions,

forming so open time domains as for x≥10∧y≥12, but

can limit enabling domains regardless of the durations

of other actions by delaying for example an action of a

certain quantity of time or by limiting the time during

which an action is offered to its environment (temporal

restriction).

s0

s1 s2

a, x b, y

s3

b, y a, x

s4

d, z

{x ≥10}

{x ≥10, y ≥12}

{∅}

10 ≤ x ≤15 ∧

12 ≤ y ≤16

{z ≥4}

c∅ ≤ 3 c∅ ≤ 4

c∅ ≤ 4 c∅ ≤ 3

s0

s1

a, x

{∅}

G={3 ≤ c∅ ≤ 3}

D={3 ≤ c∅ ≤ 3}

{x ≥ 7}

(b)

(c)

s0

s1 s2

a, x :=0 b, y :=0

s3

b, y :=0 a, x :=0

s4

d, z :=0

{x ≥10} {y ≥12}

{x ≥10, y ≥12}

{∅}

x ≥10 ∧ y ≥12

{z ≥4}

(a)

Figure 4: P behavior in term of DATA and DATA*.

Thus, let us suppose that the action a can start only

in the first three units of time, i.e. in the domain [0,3].

An action can possibly start if the value of a certain

clock belongs to its enabling domain. Action a can start

only if a particular clock did not reach value 3 yet. This

clock is initialized at the enabling moment of the system

P (i.e. at time 0). Given that the action a does not await

the end of any other action, let this clock be c∅.

Consequently, the transition a in the resulting DATA*

will be labeled by the constraint c∅≤3 (i.e. c∅∈[0,3]).

This constraint, called guard, will have to be satisfied

so that the action a can comply. If moreover, a is

delayed by a lapse of time equal to 1 (as makes the

operator ∆d
 of D-LOTOS), the guard on transition a will

be 1≤c∅≤4 (i.e. c∅∈[0+1,3+1]).

The same reasoning can be applied on the other

actions. By admitting that actions a and b of the system

P are enabled for respectively 3 and 4 units of time, and

that the action d is enabled in the process P1 (resp. P2)

in the first 5 (resp. 4) units of time, the global behavior

of P is represented by the DATA* of Figure 4.(b).

From state s3 of Figure 4.(b), P1 and P2 can be

synchronized on action d provided that actions a and b

The 2006 International Arab Conference on Information Technology (ACIT'2006)

finished their executions. The start of d is conditioned

by the constraint over the durations of a and b:

x≥10∧y≥12, and in addition by the temporal restriction

of the enabling domain of action d by 5 and 4 units of

time respectively according to the source of d (from P1

or P2). Action d coming from P1 awaits the completion

of a (which has x as clock), i.e. it waits for reaching

value 10 by clock x. Once this value reached, the expiry

time of the offer of action d of P1 starts, and finishes

after 5 units of time, i.e. after x reaches value 15.

Therefore, the enabling domain of this action is x∈

[10,15]. The same thing for the other action d having as

enabling domain y∈[12,16].
1

2.2. EXPRESSING URGENCY
We noted that the new model of DATA*'s is able to

express timing constraints due to restrictions on the

enabling domain of an action. Let us observe at present

the expression of urgent actions in this model. An

urgent action must comply as soon as it is enabled,

while time progression is stopped.

It is necessary to distinguish between urgent actions

and actions whose enabling domain is made of only one

moment in time. Let us consider the example of an

action a with duration 7 and having as enabling domain

x∈[3,3]. This action can comply only if clock x reached

the value 3; beyond this domain (for example in the

case of a refusal of the environment), action a cannot

comply any more. If on the other hand, a is an urgent

action having always as enabling domain x∈[3,3], once

x is equal to 3, time progression is stopped until a starts.

Therefore, the urgency domain of a is x∈[3,3]. By

considering the assumption of time monotonicity, at the

moment of satisfaction of the condition corresponding

to the urgency domain of an action, the latter must

occur immediately.

In our example, the domain x∈[3,3] indicates at once

enabling domain and urgency domain except that its

semantics differs in the two contexts. This observation

lets us to introduce the urgency domain at the level of

DATA*'s transitions. Thus, all transitions will be

labeled in addition to the enabling constraint G (for

guard) by the urgency constraint D (for deadline). In

the case of system P behavior represented by Figure

4.(b), all the transitions will be labeled by D={false}

because of the absence of urgent actions. The urgency

constraint D can be hidden without any ambiguity if

D={false}.

The behavior of the preceding example in which the

action a is urgent is illustrated by Figure 4.(c). The

clock c∅ is used instead of x if a is the first action which

the system can execute, which is indeed the case in our

example. In fact, clock x will be associated to action a,

the constraint over the duration of a placed on the state

s1 is written thus according to x.

1
 x∈[min,max], min≤x≤max, x≥min∧x≤max or {x≥min,x≤max}

means the same thing. The purpose of this remark is to ensure that the

functions on domains, which will be thereafter defined, can be applied

on all preceding forms of domains, even if they will be explicitly
defined by using only one form.

Note that the actions may be eager, delayable or lazy

as in Bornot et. al model [9]. An action is eager when

one has D=G in the corresponding transition, delayable

if D=∨(min~i~max)∈G (i=max) with ~∈{<,≤}, and lazy if

D={false}.

2.3. FORMALIZATION
Definition 2.1: Let H, ranged over x, y... be a set of

clocks with nonnegative values (in a time domain T,

like Q
+
 or R

+
). The set Φt(H) of temporal constraints γ

over H is defined by the syntax γ::=x∼t, where x is a

clock in H, ∼∈{=,<,>,≤,≥} and t∈Q+
. Fx will be used to

indicate a constraint of the form x∼t. A valuation (or

interpretation) v for H is a function which associates to

each x∈H a value in T. One says that a valuation v for

H satisfies a temporal constraint γ over H iff γ is true by

using clock values given by v. For I⊆H, [I→0]v

indicates the valuation for H which assigns value 0 to

each x∈I, and agrees with v over the other clocks of H.

The set of all valuations for H is noted Ξ(H). The

satisfaction relation |= for temporal constraints is

defined over the set of valuations for H, by v|=x∼t ⇔

v(x)∼t such as v∈Ξ(H). 2
T

fn is used to note the set of

finite subsets of a set T. 

Definition 2.2: A DATA* A is a tuple (S,LS,s0,H,T)

where:

1. S is a finite set of states,

2.
L S : S � 2 fn

�t�H �

 is a function which corresponds

to each state s the set F of ending conditions

(duration conditions) of actions possibly in

execution in s,

3. s0∈S is the initial state,

4. H is a finite set of clocks, and

5. T⊆S×
� 2 fn

�t�H �

×
� 2 fn

�t�H �

×Act×H×S is the set of

transitions. A transition (s,G,D,a,x,s’) represents

switch from state s to state s’, by starting

execution of action a and resetting clock x. G is

the corresponding guard which must be satisfied to

fire this transition. D is the corresponding deadline

which requires, at the moment of its satisfaction,

that action a must occur. (s,G,D,a,x,s’) can be

written s
G,D,a,x

s�. 

Definition 2.3: The semantics of a DATA*

A=(S,LS,s0,H,T) is defined by associating to it an infinite

transitions system SA over Act∪T. A state of SA (or

configuration) is a pair <s,v> such as s is a state of A

and v is a valuation for H. A configuration <s0,v0> is

initial if s0 is the initial state of A and ∀x∈H, v0(x)=0.

Two types of transitions between SA configurations are

possible, and which correspond respectively to time

passing (rule RA*) and the launching of a transition

from A (rule RD*).

�RA*�
d�R� �d�	d, v�d�
D

s,v�
d

s,v�d�

�RD*�
s,G,D,a,x,s� �T v�G

s,v�
a

 s�,��x��0�v

 
According to the maximality semantics, the label a

in RD* rule implies the start of the action a and not the

The 2006 International Arab Conference on Information Technology (ACIT'2006)

whole execution of a. In RA* rule, D=� i�I
Di where

��s,G i,Di,a i,x i, si��i�I is the set of all transitions

stemming from state s. Indeed, whenever a Di holds,

time cannot progress regardless of the other Di. The

function LS, which gives the duration conditions at the

level of a state is useful to construct timing and urgency

constraints. By construction, if Di or Gi are true then

causal actions have finished their executions. The use of

LS will be shown afterwards in translating process

between D-LOTOS expressions and DATA*'s

structures in Section 3.

Note that if one wants to guarantee that at least a

transition could be drawn starting from a state if time

cannot progress any more within this state, one requires

that the formula Di(Gi be satisfied. Let us

observe another problem in which an action a

must be drawn as soon as possible at one

moment higher strictly than 1 (i.e. in the

interval]1,+([). This moment cannot

obviously be known, which lets us require that

urgency domains do not have to be left open.

REMARK 2.1: URGENCY DOMAINS

ARE ALWAYS LEFT CLOSED, I.E.

THEY ARE ON THE FORM [.] OR [.[.

3. Operational construction of DATA*'s

The approach of generating DATA*'s from D-

LOTOS expressions is very close with that of

[16,28] for the generation of MLTS structures

from Basic LOTOS expressions. From now

on, the set M of maximal events will be used

to indicate the set of clocks. This is justified

by the dynamic choice of clocks

corresponding to the occurrence of events. To

formalize generation process, functions (, \ and

the substitution one introduced in [16,28]

spread directly on the configurations relating

to DATA*'s states. Configurations

corresponding to DATA*'s states belong to the

set C*. The function (of extraction of the

maximal events set from a configuration is

redefined on C* in the same way in order to

specify used clocks in a DATA*
�configuration, except that the equation is

� �replaced by , with given by Definition 3.1.

Definition 3.1: The function
�H : 2fn

�t�H�� 2fn
H

, which

determine the set of used clocks in a duration conditions

set, is defined recursively by:

�H�����

�H��x � t����x�

�H�F1 �F2���H�F1���H�F2�

such as

F1 , F2 � 2fn

�t�H�, x � H ,�� ��,	,�,�,��and t � Q�
 

In order to determine duration conditions set of a

configuration C*, we use the function

If E is a DATA configuration; E\K, which indicates

the configuration obtained by the suppression of the set

K of duration conditions written according to clocks

used by the set F of E remains the same one, except the

equation (F[E])\K=F\K[E] which replaces (M[E])\N

=M-N[E], with F\K given in Definition 3.2.

Definition 3.2: Let F be an ending conditions set; F\K

indicates the set obtained by the suppression, starting

from F, of all the duration conditions written according

to the clocks of K (K⊆H). F\K is recursively defined on

F as follows:

�\K ��

�F1 �F2�\K �F1 \K �F2 \K

�x � t�\K �
� if x � K

�x � t� otherwise

such as

F1 ,F2 � 2 fn

�t�H�, K �H , x � H ,�� ��,	,�,�,��and t � Q�

 
Simultaneous substitution remains unchanged aside

from the equation (M[E])σ=Mσ[E] which will be replaced

by (F[E])σ=Fσ[E]. If x,y∈H and
F � 2fn

�t�H�

 then

F���F i�F
�F i with {x∼t}σ={σ(x)∼t}, and σ is the

substitution function given in [16,28].

The specification of delays and timing constraints

requires the definition of a function shift(G,t) dealing

with the move of a temporal domain by a time t, i.e.

shift�G, t�
déf
���min �t � i �max �t�|�min � i �max��� G

with ~∈{<,≤}.

In order to restrict a temporal domain on its upper

bound, we use function maxval(G)
déf
� �
�min�i�max��G

�i �max�

 with ~∈{<,≤}.

Definition 3.3: The transition relation of DATA*'s

C*×
� 2 fn

�t�H �

×
� 2 fn

�t�H �

×Act×H×C* is defined as being the

smallest relation satisfying the following rules:

φ DC : C * ÷ 2 fn
→t⇑H ⇒

.

The 2006 International Arab Conference on Information Technology (ACIT'2006)

such as, c∅ is a particular clock which is created and

initialized at the enabling time of the system, and D is

the underlying countable time domain for D-LOTOS

language. 

Notation 3.1: We have chosen the following notation:

For the observable actions, we have

• a@t[t≤d];E=a{d};E (the selection predicate SP

of the form t≤d is replaced by a temporal

restriction), with t not free in E.

• a@t[d≤t≤d′];E=∆
d
a{d′-d};E, with d≤d′ and t is

not free in E.

If i is a non observable action, then

• i@t{0};E=i@t;E (If {d} is omitted, then d=0).

• i@t{d};E=i{d};E if t is not free in E.

The 2006 International Arab Conference on Information Technology (ACIT'2006)

By convention, if the enabling domain {d} is omitted

in a{d};E, then d=∞. In the same way, if SP is omitted,

then SP=true. If the deadline constraint D is omitted

in any transition, then D={false}. 

For the sake of presentation, we focus our

explanation only on rules 1, 2, 3 and 4 which give the

main idea of the operational semantics. The meaning of

the other rules should be easy after explanations below.

In rules 1a and 2a, an action offered in a lapse of

time equal to u and depending on the end of no other

one can comply provided that the value of clock c∅ does

not exceed the u value. If the start of an action a

depends on the end of at least another action, the

enabling constraint G is built on the one hand starting

from durations of clocks corresponding to actions of

which a depends, and on the other hand by the offer

interval u of a, which is expressed by the rules 1b and

2b.

In rules 1a, 1b, 2a and 2b of Definition 3.3, all

actions are not urgent, which explains why the

constraints D are always put at false.

Rules 3a and 3b express the firing of an internal

action. This action becomes urgent at the end of

enabling lapse of time d. In these rules, the urgency

constraint D is built starting from enabling constraint G.

As we already mentioned, the semantics of the two

constraints differs: at the moment of satisfaction of D,

the action must be launched. The same reasoning will

be applied to hidden actions where the urgency is

expressed through the rule 7b.

We will explain the use of operator @ through D-

LOTOS expression E=a@t1[t1≤3]; b@t2[t2≤t1]; stop.

Let us suppose that the respective durations of a and b

are 20 and 7. As soon as the expression a@t1[t1≤3];F

is equivalent to a{3};[d/t1]F (d is the interval between

the enabling and the end of execution of a), and the start

of action a does not depend on the end of any other

action, we will just substitute the variable t1 on the level

of the predicate t1≤3 by the clock c∅ to have the

enabling constraint c∅≤3. In the remaining expression

b@t2[t2≤t1];stop, all free occurrences of variable t1

receive the lapse of time between the enabling (c∅=0)

and the end of execution of a (current value of c∅,

which will be noted val(c∅), plus the duration of a,

τ(a)). Therefore, this interval is equal to val(c∅)+τ(a)-0

= val(c∅)+τ(a). It is expressed by the rule 4a. The

following transition becomes possible:

In the configuration config1, enabling domain of b is

t2∈[0,val(c∅)+20], and as the action b depends on the

end of a which lasts 20 units of time and which has x as

clock, enabling domain of b becomes

x∈[0+20,val(c∅)+20+20]. Generally speaking, if one

has several clocks in duration constraint F (given by LS

function) of the source configuration, the shift of the

interval implies all these clocks, which is expressed by

the rule 4b. In our example, enabling constraint of b

only implies clock x with a shift of 20 units of time. The

following transition becomes possible:

Now, if instead of stop we have the expression

c@t3[t3≤t1+t2];stop (i.e. the expression E becomes

a@t1[t1≤3];b@t2[t2≤t1];c@t3[t3≤t1+t2];stop), with c

of duration 18, the transition representing the beginning

of execution of c will be guarded by the domain

x � 0,

t1

val�c���20 �

t2

val�x��7�20

, shifted by 7 units, i.e.

7 �x �

t1

val�c���20 �

t2

val�x��7�20 �7

. In other words, t1

always contains the value val(c∅)+20, while the variable

t2 contains val(x)+7-20 because the action b is enabled

when x=20, and the end of execution of b is stored in

start of b

val�x��

 �b�
!

7

. In a more general way, if the transition b

is guarded by a constraint built of several clocks such as

x∈[minx,maxx]∧y∈[miny,maxy]∧..., the value of t2 in the

remaining expression c@t3[t3≤t1+t2];stop can be

expressed using only one clock among {x,y,…}, such as

j, since the lapses of time are equal regardless of time

scale (i.e. val(x)+7-20=val(y)+7-d1=val(z)+7-d2=… and

d1,d2,…∈D). This is expressed by the rule 4b, hence

the following transition:

Regarding the use of the operator @ with internal

actions, the rules 3a and 3b will be applied in the same

way on expression i@t{d};E with t not free in E.

The rule 8 relates to delaying an action a with a

certain quantity of time d. One can notes that if the

delaying operator ∆ is applied to a configuration E, only

the first action drawn from the configuration E will be

delayed.

Remark 3.1: Without loss of generality, we used D-

LOTOS language in which actions durations are fixed

once and for all at the enabling moment of the system.

The case where actions have durations chosen from an

interval [m,M] is not considered.

4. DISCUSSION
The study of timed automata and timed automata with

non-instantaneous actions models showed us that the

state space combinatorial explosion problem and the

difficulty of expressing certain parallel behaviors are

respectively inherent in the structure of each one of

these models. The DATA*'s model enabled us to

overcome each one of these problems.

The 2006 International Arab Conference on Information Technology (ACIT'2006)

In dynamic timed automata [13,22], the automaton is

known as dynamic because clocks number can vary

from a state to another. Note that DATA*'s model, in

addition to its aptitude to take into account non-atomic

actions, allows the use of dynamic clocks of which

construction is done in one step by, in our case, the

function get. However, in DTA's, clocks construction is

made in two steps [13], the first one is mainly intended

to build a virtual clock for each concurrent component

of the RT-LOTOS specification, while the second one is

devoted to the mapping between these virtual clocks

and current clocks of the generated DTA.

Now, regarding the class of updatable timed

automata [10,11,12], and given that the transitions

between DATA*'s states imply an automatic reset of the

corresponding clocks, some behaviors expressed by

updatable timed automata could not be expressed using

a DATA*. To specify protocols based on updates as

ABR (Available Bit Rate [6]), an alternative consists in

modeling updates by the use of more general operations

on variables, as it is implemented in HYTECH tool [19].

We can deduce that a theoretical comparison

between DATA*'s model and the existing ones would

be of a capital significance to be able to surround the

least expressive model but most sufficient to meet the

needs of real-time applications with durations

associated with actions.

5. CONCLUSION AND PERSPECTIVE
This paper proposes a real-time extension to DATA's

model which is very near syntactically to timed

automata, taking into account structural and temporal

non-atomicity of actions, timing constraints and

urgency. The goal has been to define a semantic model

which makes more natural expressing concurrent and

parallel behaviors of real-time systems. The idea is

based on the principle of the maximality semantics in

which only the starts of actions are modeled; ends of

execution are captured by the corresponding durations.

As perspective, we hope that additional information

in maximality-based labeled transition systems can

allow us reducing the number of states and transitions in

the graph without loss of information, and then escaping

from the explosion of the underlying graph. For

instance, the concurrency of two actions may be

expressed as . Work in this direction

can be found in [23,27,34,35]. This should spread over

DATA*'s model.

Regarding formal verification of real-time systems,

we think that we can adapt model checking algorithms

by taking as semantic model DATA*'s structures. This

can express, as for MLTS model [30,33], desired

properties in a more natural way reasoning directly on

actions.

REFERENCES
[1] Alur R. and Dill D., “Automata for Modeling Real-Time

Systems,” in Proceedings of ICALP’90, vol. 443 of

LNCS, pp. 322-335. Springer-Verlag, 1990.

[2] Alur R. and Dill D., “A Theory of Timed Automata,”

TCS, vol. 126, pp. 183-235, 1994.

[3] Alur R., Fix L., and Henzinger T. A., “Event-Clock

Automata: A Determinizable Class of Timed

Automata,” in Proceedings of CAV’94, pp. 1-13,

Springer-Verlag, 1994.

[4] Barbuti R., De Francesco N., and Tesei L., “Timed

Automata with Non-Instantaneous Actions,”

Fundamenta Informaticae, vol. 46, pp. 1-15, 2001.

[5] Belala N. and Saïdouni D. E., “Non-Atomicity in Timed

Models,” in Proceedings of ACIT’2005, Al-Isra Private

University, Jordan, December 2005.

[6] Bérard B. and Fribourg L., “Automatic Verification of a

Parametric Real-Time Program: The ABR Conformance

Protocol,” in Proceedings of CAV’99, vol. 1633 of

LNCS, Springer-Verlag, 1999.

[7] Bolognesi T. and Brinksma E., “Introduction to the ISO

Specification Language LOTOS,” Computer Networks

and ISDN Systems, vol. 14, pp. 25-59, 1987.

[8] Bornot S. and Sifakis J., “On the Composition of Hybrid

Systems,” in Proceedings of HSCC’98, vol. 1386 of

LNCS, pp. 69-83. Springer-Verlag, 1998.

[9] Bornot S., Sifakis J., and Tripakis S., “Modeling

Urgency in Timed Systems,” in Proceedings of

COMPOS’97, vol. 1536 of LNCS, Springer-Verlag,

1997.

[10] Bouyer P., Modèles et Algorithmes pour la Vérification

des Systèmes Temporisés, PhD thesis, Ecole Normale

Supérieure de Cachan, France, April 2002.

[11] Bouyer P., Dufourd C., Fleury E., and Petit A., “Are

Timed Automata Updatable?,” in Proceedings of

CAV’2000, vol. 1855 of LNCS, pp. 464-479, Springer-

Verlag, 2000.

[12] Bouyer P., Dufourd C., Fleury E., and Petit A.,

“Updatable Timed Automata,” Theoretical Computer

Science, vol. 321(2-3), pp. 291-345, 2004.

[13] Courtiat J.-P., and de Oliveira R. C., “A Reachability

Analysis of RT-LOTOS Specifications,” in Proceedings

of FORTE’95, Chapman and Hall, London, 1995.

[14] Courtiat J.-P., Santos C. A. S., Lohr C., and Outtaj B.,

“Experience with RT-LOTOS, a Temporal Extension of

the LOTOS Formal Description Technique,” Computer

Communications, vol. 23, pp. 1104-1123, 2000.

[15] Courtiat J.-P., de Camargo M. S., and Saïdouni D. E.,

“RT-LOTOS: LOTOS Temporisé pour la Spécification

de Systèmes Temps-Réel,” CFIP’93, pp. 427-441,

Hermes, 1993.

[16] Courtiat J.-P. and Saïdouni D. E., “Relating Maximality-

based Semantics to Action Refine-ment in Process

Algebras,” in Proceedings of FORTE’94, pp. 293-308,

Chapman and Hall, 1995.

[17] Devillers R., “Maximality Preservation and the ST-Idea

for Action Refinement,” Advances in Petri Nets, vol.

609 of LNCS, pp. 108-151, Springer-Verlag, 1992.

[18] Devillers R., “Maximality Preserving Bisimulation,”

TCS, vol. 102, no. 1, pp. 165-184, 1992.

[19] Henzinger T. A., Ho P.-H., and Wong-Toi H.,

“HYTECH: A Model Checker for Hybrid Systems,”

Journal of Software Tools for Technology Transfer, vol.

1(1-2), pp. 110-122, October 1997.

[20] Henzinger T. A., Nicollin X., Sifakis J., and Yovine S.,

“Symbolic Model-Checking for Real-Time Systems,”

Information and Computation, vol. 111, pp. 193-244,

1994.

[21] Léonard L. and Leduc G., “An Introduction to ET-

LOTOS for the Description of Time-Sensitive Systems,”

Computer Networks and ISDN Systems, vol. 29, pp.

271-292, 1997.

[22] Lohr C., Contribution à la Conception de Systèmes

Temps-Réel S’appuyant sur la Technique de Description

The 2006 International Arab Conference on Information Technology (ACIT'2006)

Formelle RT-LOTOS, PhD thesis, LAAS-CNRS,

Toulouse, France, 2002.

[23] Magniette F., Pilard L., and Rozoy B., “Model Checking

et Produit Synchronisé,” in Proceedings of MSR’03, pp.

213-224, Metz, France, October 2003.

[24] Merlin P., A Study of the Recoverability of Computer

System, PhD Thesis, Dept. Computer Sciences,

University of California, Irvine, 1974.

[25] Moller F. and Tofts C., “A Temporal Calculus of

Communicating Systems,” CONCUR, vol. 458 of

LNCS, pp. 401-415, Springer-Verlag, 1990.

[26] Ramchandani C., Analysis of Asynchronous Concurrent

Systems by Timed Petri Nets, PhD Thesis, MIT,

Cambridge, Feb. 1974.

[27] Ribet P. O., Vérification Formelle de Systèmes:

Contribution à la Réduction de l’Explosion

Combinatoire, PhD thesis, LAAS-CNRS, Toulouse,

France, 2005.

[28] Saïdouni D. E., Sémantique de Maximalité: Application

au Raffinement d'Actions en LOTOS, PhD Thesis,

LAAS-CNRS, Toulouse, France, 1996.

[29] Saïdouni D. E. and Belala N., “Straightforward

Adaptation of Interleaving-Based Solutions for True

Concurrency-Based Logic Verification Approaches,” in

Proceedings of CISC’2004, University of Jijel, Algeria,

September 2004.

[30] Saïdouni D. E. and Belala N., “Using Maximality-Based

Labeled Transition System Model for Concurrency

Logic Verification,” The International Arab Journal of

Information Technology (IAJIT), vol. 2(3), pp. 199-205,

July 2005. ISSN:1683-3198.

[31] Saïdouni D. E. and Courtiat J.-P., “Prise en Compte des

Durées d'Action dans les Algèbres de Processus par

l'Utilisation de la Sémantique de Maximalité,” in

Proceedings of CFIP’2003, France, Hermes, 2003.

[32] Saïdouni D. E. and Ghenaï A., “Intégration des Refus

Temporaires dans les Graphes de Refus,” in

Proceedings of NOTERE’2006, Hermes, Toulouse,

France, 2006.

[33] Saïdouni D. E. and Labbani O., “Maximality-Based

Symbolic Model Checking,” in Proceedings of

ACS/IEEE, Tunisia, July 2003.

[34] Vernadat F., Azéma P., and Michel F., “Covering Step

Graph,” in Proceedings of Application and Theory of

Petri Nets 96, vol. 1091 of LNCS. Springer-Verlag,

1996.

[35] West C. H., “Protocol Verification by Random State

Exploration,” in PSTV VI, pp. 233-242, 1986.

