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ABSTRACT 

This paper describes a formal framework for specification and analysis of object-oriented designs. The formal design 

notation models both the structural and behavioral views of the design. The analysis framework supports a Goal 

Expression Language (GEL) that allows the user to express his/her analysis goals for the specific design under 

consideration and the processor then analyzes the design according to these goals. Code generation is supported 

following successful analysis. 
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1. INTRODUCTION 
Detecting errors at earlier stages of software 

development is extremely crucial to avoid time and 

budget related problems. Also since the most constant 

quality of software is change, it is important that the 

design follows all the OOD principles. Before the 

design goes into the implementation stage, it has to be 

analyzed, so that errors, if any can be detected. To 

perform rigorous analysis of a design, the analysis tools 

require that the design notation used for the 

specification of the design be precise and formal. 

Research has been done in this area, but there is a lack 

of a framework that provides a design notation and an 

analysis framework that supports analysis based on user 

defined constraints. The popular design notations 

present today do not provide sufficient formality. 

Existing work centers around analysis tools that detect 

inconsistencies among different designs or perform 

analysis based on predefined constraints. Our research 

addresses these issues. GEL provides flexibility to the 

user to specify analysis constraints. This makes the 

analysis more specific to that particular design. Instead 

of hard coding the analysis constraints into the analysis 

tool, our processor supports user-defined analysis goal 

execution. This makes the analysis framework more 

stable against evolving design notations. Finally, after 

successful analysis, C++ code is generated.  

The paper is organized as follows. Section 2 

discusses some of the issues associated with object-

oriented analysis. In section 3 a formal design notation 

is presented. In section 4 a brief overview of our formal 

analysis framework and GEL is presented. Section 5 

describes the transformation from GEL to intermediate 

level of the language processor that performs rigorous 

analysis of the design. In section 6 the code generation 

process is described. Section 7 summarizes this work 

and suggests directions for future research. 

 
2. ISSUES AND OBJECTIVES 

UML is an excellent visualization tool that provides 

different views of the same system thereby providing 

more information about the system [3]. It is popular 

today because it is extremely intuitive. The problem 

though is that it is not completely formalized [7]. The 

semantics of UML is expressed in natural language. The 

diagrams and the informal semantics are subject to an 

individual’s interpretation and can lead to disagreement 

between individuals. The constraints are expressed 

using Object Constraint Language (OCL). The 

semantics of this language are yet to be completely 

precisely defined [12]. Due to the lack of formality and 

precision in UML, analysis tools based on UML cannot 

support rigorous analysis of a design. 

Other formal notations like Syntropy, LOTOS and 

Object Z were developed to formalize UML. A large 

semantic gap existed between the formal notations and 

the graphical ones that they represented. In reference [4] 

a formal framework for UML state diagrams using 

ASMs is proposed. In [9] the UML model and OCL 

constraints are translated to the language of theorem 

prover PVS. Thus along with defining formal syntax 

and semantics for both UML and OCL, it also supports 

formal verification of systems. This work deals with 

class diagrams and state diagrams. As noted in [9] the 

coarse level specification of OCL constraints is not 

sufficient to automate the verification process. A 

number of analysis techniques that were developed, 

detected inconsistencies among different diagrams ([8], 

[5], [6]). These techniques are good at detecting 

inconsistencies, but can let some design flaws go 

unnoticed, unless the designer notices them.  In [7] the 

authors discuss a framework that performs analysis of 

the design by proposing a conjecture and proving it 

true. Since, the basis of this is still a conjecture; it can 

hide some design flaws. Other testing tools were 

developed to test the behavior of the system ([10], [11]). 

These are rather involved techniques and we believe 

that more comprehensive results can be obtained by 
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using simpler techniques. Other analysis tools analyzed 

the designs based on predefined constraints [2]. This 

raises a couple of issues. First, this kind of analysis is 

more generalized and the constraints apply to a broad 

range of designs. Finer details of the design cannot be 

analyzed by such hard-coded constraints. These finer 

constraints are specific to each design and can vary 

from design to design. Also, as the design notation 

evolves, the predefined constraints may no longer be of 

any use and a new tool might have to be created. 

This paper addresses these issues and provides a 

formal framework for the specification and analysis of 

the design. The main objectives of this research are as 

follows: 

• To develop a formal notation for design 

specification using simple set theory. 

• To design a simple language for the user to express 

analysis goals. 

• To develop a formal analysis framework to perform 

rigorous analysis of the design according to the 

specified constraints. 

• To support code generation after successful 

analysis. 

 

3. FORMAL NOTATION 
Our goal is to define a simple and intuitive design 

notation that can express all elements of an OOD. Our 

notation is a set based notation and uses previously 

defined concepts in Object Oriented Design Language 

(OODL) and Communicating Sequential Processes 

(CSP). OODL is an expressive language that captures 

the notations of Booch’s and Coad’s approaches. This 

language was formally defined in [1]. The behavior 

modeling is based on the concept of Object Life History 

(OLH) and CSP. CSP models both the OLH and the 

object interactions. The structural model consists of a 

design and the behavior is a part of this design. The 

behavior model consists of objects. Objects interact 

with each other using communication events that are 

either outgoing or incoming and interact with the 

environment using general events. The OLH describes 

the different sequences of these events that can occur, 

thus capturing the dynamic behavior of the system. The 

design is defined as a set of elements, wherein each 

element in turn is a set. A high-level description of the 

formal notation is discussed below. 

• The root component of our formal notation is a 

global system, which is defined as a set of 

packages. 

• Each package in turn has a package name, a set of 

dependencies in which this package participates, a 

set of classes and a set of relationships between 

these classes. 

• Each class now has a class name, a set of attributes, 

a set of methods and a behavior. 

• Each dependency in the dependency set has two 

elements which are the names of the two packages 

participating in the dependency. 

• Each relationship in a relationship set has a name, 

the two participating classes, role names and their 

respective cardinalities. 

• Each attribute has a name and a type along with its 

access modifier, which can be public, private or 

protected. 

• Each method has a name, an access modifier, a 

return type and a set of parameters, where each 

parameter in turn has a name and a type. 

• The behavior set has a behavior name, a set of two 

events that can participate in that class and a set of 

sequences of events that can occur. 

• Each event has a name and a type which can be 

general, incoming or outgoing. 

• Each sequence is a set of events that occur in a 

particular order represented by edges. 

 

4. FORMAL ANALYSIS 
Once the design elements have been defined formally, 

rigorous analysis can be done on the design to detect 

errors. To analyze the design according to the user’s 

analysis goals a simple Goal Expression Language 

(GEL) is developed. The goal is to keep this language 

as simple and as close to natural language as possible, 

while making it powerful enough to express various 

types of constraints. The processor includes support for 

this language to perform semantic analysis of the 

design. The basic element of this language is an 

analysis goal for which a design needs to be analyzed. 

This goal can be expressed using any of the following 

elements of the language. 

• Set membership element:  The analysis goal is 

applied to some of the design elements like class, 

method etc. Members of these elements or sets 

need to be identified first. 

• Conditional element: Filtering conditions can be 

used for selecting specific members of the set. 

• Iterator element: Iterations can be specified on set 

members by combining the universal quantifier 

and/or the conditional element. 

• Constraint element: Once the members are 

identified, the constraints need to be specified. 

These constraints can be specified using: 

o Relational operators 

o Set inclusion/exclusion operators 

o Existential quantifier 

o Universal quantifier 

o If-then element 

o Logical operators to specify more 

than one constraint 

o Predicates can be applied to set 

members like cycles, superclass, 

subclass etc. 

Some commonly used properties of OODs are used as 

examples to demonstrate the use of the language. 

 

4.1. UNIQUE IDENTITY CONSTRAINTS 
Some of the elements are required to be unique in a 

design. Class names in a package cannot be repeated. 

The same can be applied to attributes in a class and 

parameters in a method, but the same does not apply to 

methods. The identity of a method is not only its name 

but also its parameters. So method signatures on the 
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whole have to be unique. Similar identity constraints 

can be applied to relationships. 

1. Class names in a package should be unique 

 each class c1, c2 in each package p 

      name(c1) != name(c2) 

2. Method signatures in a class should be unique 

each method m1, m2 in each class c 

    m1 != m2 

Discussion: The design elements on which the 

constraints should be applied have to be specified along 

with an instance of that element, like class c1, c2. The 

constraints can be applied either directly to these 

instances as a whole or on each field like name of class, 

type of attribute etc. The keyword each specifies that all 

the instances in each element have to satisfy these 

constraints. 

 

4.2.  CONSTRAINTS ON ATTRIBUTES 
1. All attributes in a class should be private 

each attribute a in each class c 

     visbility(a) == private 

2. Attribute type should be built-in or user defined 

each attribute a in each class c 

     type(a) ∈  primitive ∨  

     type(a) ∈  userdefined 

Discussion: primitive, userdefined and private (or any 

other access modifier) are all defined as keywords. 

primitive includes int, float, char, bool and string since 

a is an attribute. userdefined specifies the namespace for 

attributes of each class. Similar constraints could be 

applied to parameters, except that they cannot have an 

access modifier. 

 

4.3. CLASS ISOLATION CONSTRAINT 
This constraint specifies that no class in a package can 

be isolated. So, it has to participate in at least one 

relationship in that package. 

1. All classes in a package should have some 

relationship with at least one of the other classes in 

the package 

each class c in each package p 

    ∃  relationship r in same package p such that 

          superclass(r) == name(c) ∨  

          subclass(r) == name(c) 

Discussion: The aggregation, composition and 

generalization relationships identify participating 

classes as superclass and subclass, which are used as 

predicates in our language. The keyword same specifies 

that the same set as used earlier is considered. 

 

4.4. RELATIONSHIP CONSTRAINTS 
Relationships between classes can be identified using 

their name, the two classes that participate in that 

relationship and their cardinality. The same pair of 

classes cannot appear more than once in relationships. 

Also, both the classes participating in a relationship 

have to be different. Moreover in a composition 

relationship, the part class or the subclass cannot be a 

“part” in another relationship. 

1. Relationship pair(c1, c2) can appear at most once 

in a package 

each relationship r1, r2 in each package p 

     superclass(r1) != superclass(r2) ∧  

     subclass(r1) != subclass(r2) 

2. The two classes participating in a relationship have 

to be different 

each relationship r in each package p 

     superclass(r) != subclass(r) 

3. In composition the “part” class cannot be “part” 

of any other relationship 

each relationship r1, r2 in each package p such that    

name(r1) == composition AND name(r2) == 

composition 

     subclass(r1) != subclass(r2) 

4. Circular inheritance cannot exist in a package 

all relationship r in each package p such that 

name(r) == generalization 

      !cycles(r) 

5. Cardinality should be non-negative integers 

each relationship r in each package p 

      cardinality1(r) >= 0 ∧  

      cardinality2(r) >= 0 ∧  

      cardinality1(r) ∈  integers ∧  

      cardinality2(r) ∈  integers 

Discussion: Conditions can be specified for selecting 

instances using keywords such that. cycles is a predicate 

that can be used to specify cycles constraint on 

relationships, packages or events. 

 

4.5. EVENT CONSTRAINTS 
These constraints specify that the incoming events in 

one class should have corresponding outgoing events in 

the same class from which this event was received. 

Similarly an outgoing event in a class should have a 

corresponding incoming event in another class that is 

being referenced as receiving this event. 

1. Every incoming event has a corresponding 

outgoing event 

each event e in each behavior b, class c 

     if type(e) == incoming then  

          ∃  event e1 in behavior b1, class c1 

           such that name(e) == name(e1)∧  

           type(e1) == outgoing 

2. Every outgoing event has a corresponding 

incoming event 

each event e in each behavior b, class c 

     if type(e) == outgoing then  

          ∃  event e1 in behavior b1, class c1 

           such that name(e) == name(e1)∧  

           type(e1) == incoming 

3. Every event has a corresponding method of the 

same name in its structural diagram 

each event e in each behavior b, class c 

     ∃  method m in same class c such that  

           name(e) == name (m) 

4. The behavior name is the same as the class name in 

the structural diagram 

each behavior b in each class c 

     name(b) == name(c) 

5. All events in each sequence must be declared 

each event e in each sequence s, behavior b  

     ∃  event e1 in same behavior b such that 
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          e1 == e 

6. All events declared must be used in some sequence 

each event e in each behavior b  

     ∃  sequence s in same behavior b 

     such that some(event(s)) == e 

7. No sequence can start with an outgoing event 

each sequence s in each behavior b 

     type(first(event(s))) != outgoing 

Discussion: if statements can also be used as usual. 

Logical operators can be used to combine conditions as 

well as then statements. 

 

5. TRANSLATION 
This section discusses the mapping from the analysis 

expression language to the intermediate language of the 

processor. 

• The “each” statements map to iterations that are 

performed on each of the objects of the specified 

design elements. The included operations are 

performed on each of the objects. 

E.g. each class c in each package p 

             Stmt1 

MAPS TO: In each package p, consider each class 

c and execute Stmt1 on c. 

• While the keyword “each” means perform the 

following operation on each object, the keyword 

“all” means, consider a set of all the objects and 

perform the operation on this set. 

E.g. all relationship r in each package p such that 

name(r) == generalization 

              Stmt1 

MAPS TO: Consider a set of all relationships with 

name “generalization” and execute Stmt1 on this 

set. 

• If the operations are not to be performed on all the 

objects, filtering conditions can be specified using 

“such that” constraint. Hence, “such that” 

statements map to filtering conditions.  

E.g. each relationship r in each package p such that 

name(r) == generalization 

             Stmt1 

MAPS TO: In each package p, consider each 

relationship r with name generalization and execute 

Stmt1 on r. 

• Relational operators can be specified for comparing 

predicates on objects like name, type etc. They can 

also be used to compare objects themselves, in 

which case each field of one object is compared to 

corresponding field of the other object. 

E.g. name(c1) != name(c2) 

MAPS TO: c1.Name != c2.Name 

E.g. m1 != m2; If m1 and m2 are methods 

MAPS TO: m1.Type != m2.Type OR 

                   m1.Name != m2.Name OR 

                   m1.Parameter != m2.Parameter 

• Relational operators can also involve keywords. 

The keywords map to function calls. These 

functions are predefined. 

E.g. a IN primitive 

MAPS TO: a belongs to the predefined set 

a ∈  {int, float, char, bool, string}; if a is an 

attribute or a parameter 

a ∈  {int, float, char, bool, string, void}; if a is a 

method 

• “exists” statements map to search functions 

meaning search for at least one element that 

satisfies the condition. 

E.g. ∃  event e in each class c such that 

     Stmt1 

MAPS TO: search in class c at least one event e 

such that it satisfies condition specified in Stmt1. 

Multiple conditions can be specified using logical 

operators ∧  and ∨ . 

 

6. CODE GENERATION 
The design can be analyzed for different constraints and 

the model can be refined in case of any errors. After 

successful analysis of the design, C++ code is 

generated. This code is the skeleton based on the 

design, implementing both the structural and behavioral 

models of the design. The structural code is the class 

definition, while the behavioral code is the trace of 

events specified in the behavior model. A simplified 

model of a university system is shown in the Appendix. 

 

7. CONCLUSION 
A formal framework for the specification and analysis 

of OODs was developed. This framework provides a 

formal, set-based design notation, a goal expression 

language, an analysis processor and a code generator. 

The design notation models both structural and 

behavioral views of the design and is semantically 

similar to the graphical notations it models. GEL and 

the analysis processor at this time analyze static 

behavior of the system. More work can be done to 

include support for dynamic behavior analysis of the 

system. The language is powerful enough to express the 

dynamic behavior goals. The code generator needs to 

handle the dynamic behavior goals. The formal 

semantics of GEL will be explained in detail elsewhere. 

Work is currently being done on it. 
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APPENDIX 
University System Design 

 

//University System Model 

begin design UniversitySystem 

begin package UniversitySystem 

class Department 

  attributes: 

    private deptId: int, 

    private deptName: string 

  relations: 

    association Student enrolls [1..*], 

    association Course offers [1..*] 

  operations: 

    public AddDept(int: DId, string: DName): bool, 

    public DelDept(int: DId): bool 

end Department 

 

class Student 

  attributes: 

    private studentId: int, 

    private FName: string, 

    private LName: string,  

    private DId: int 

  relations: 

    association Department majorsIn[*..1], 

    association Registration requests[1..*] 

  operations: 

    publicAddStudent(int: studentId, string: FName, 

string: LName, int: DId): bool, 

    public DelStudent(int: studentId): bool 

end Student 

 

class Course 

  attributes: 

    private int: courseId, 

    private string: courseName, 

    private int deptId, 

    private int creditHours 

  relations: 

    association Department belongsTo[*..1] 

    association Registration requires[1..*] 

  operations: 

    public AddCourse(int: CId, string: CName, int: DId, 

int: CHours): bool, 

    public DelCourse(int CId, int DId): bool 

end Course 

 

class Registration 

  attributes: 

    private int: SId, 

    private int: CId 

  relations: 

    association Student registers[*..1], 

    association Course refersTo[*..1] 

  operations: 

    public AddRegistration(int: SId, int: CId): bool, 

    public DelRegistration(int: SId, int: CId): bool 

end Registration 

 

begin behavior UniversitySystem 

OLH Department 

alphabet Department = {AddDept(did, dname), 

DelDept(did), Course ! AddCourse(cid, cname, did, 

chrs), Course ! DelCourse(cid)} 

 

Department = (AddDept(did, dname) -> Course ! 

AddCourse(cid, cname, did, chrs) | Course ! 

DelCourse(cid, did) -> DelDept(did)) 

 

end behavior UniversitySystem 

end package UniveristySystem 

end design UniversitySystem 

 

//Generated Code Structural 

class Department 

{ 

  private: 

    int deptId; 

    string deptName; 

  public: 

    Department(); 

    ~Department(); 

    bool AddDept(int Did, string DName); 

    bool DelDept(int DId); 

}; 
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class Course 

{ 

  private: 

    int courseId; 

    int courseName; 

    int deptId; 

    int creditHours; 

  public: 

    Course(); 

    ~Course(); 

    bool AddCourse(int CId, string CName, int Did, int 

CHours); 

    bool DelCourse(int Cid, int DId); 

}; 

 

//Generated Code Behavioral 

behavior Department 

{ 

    AddDept(did, dname); 

    AddCourse(cid, cname, did, chrs); 

 

    OR 

 

    DelCourse(cid, did); 

    DelDept(did); 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 


