
The 2006 International Arab Conference on Information Technology (ACIT'2006)

A Formal Analysis Framework of Object-Oriented Designs

Boumediene Belkhouche

*
 and Sonal Dekhane

**

*
Faculty of Computer Science, Tulane University, New Orleans, LA, USA

bb@eecs.tulane.edu

**
Doctoral Candidate, Tulane University, New Orleans, LA, USA

dekhane@eecs.tulane.edu

ABSTRACT

This paper describes a formal framework for specification and analysis of object-oriented designs. The formal design

notation models both the structural and behavioral views of the design. The analysis framework supports a Goal

Expression Language (GEL) that allows the user to express his/her analysis goals for the specific design under

consideration and the processor then analyzes the design according to these goals. Code generation is supported

following successful analysis.

Keywords: object-oriented design, design specification, formal analysis, goal expression language

1. INTRODUCTION
Detecting errors at earlier stages of software

development is extremely crucial to avoid time and

budget related problems. Also since the most constant

quality of software is change, it is important that the

design follows all the OOD principles. Before the

design goes into the implementation stage, it has to be

analyzed, so that errors, if any can be detected. To

perform rigorous analysis of a design, the analysis tools

require that the design notation used for the

specification of the design be precise and formal.

Research has been done in this area, but there is a lack

of a framework that provides a design notation and an

analysis framework that supports analysis based on user

defined constraints. The popular design notations

present today do not provide sufficient formality.

Existing work centers around analysis tools that detect

inconsistencies among different designs or perform

analysis based on predefined constraints. Our research

addresses these issues. GEL provides flexibility to the

user to specify analysis constraints. This makes the

analysis more specific to that particular design. Instead

of hard coding the analysis constraints into the analysis

tool, our processor supports user-defined analysis goal

execution. This makes the analysis framework more

stable against evolving design notations. Finally, after

successful analysis, C++ code is generated.

The paper is organized as follows. Section 2

discusses some of the issues associated with object-

oriented analysis. In section 3 a formal design notation

is presented. In section 4 a brief overview of our formal

analysis framework and GEL is presented. Section 5

describes the transformation from GEL to intermediate

level of the language processor that performs rigorous

analysis of the design. In section 6 the code generation

process is described. Section 7 summarizes this work

and suggests directions for future research.

2. ISSUES AND OBJECTIVES

UML is an excellent visualization tool that provides

different views of the same system thereby providing

more information about the system [3]. It is popular

today because it is extremely intuitive. The problem

though is that it is not completely formalized [7]. The

semantics of UML is expressed in natural language. The

diagrams and the informal semantics are subject to an

individual’s interpretation and can lead to disagreement

between individuals. The constraints are expressed

using Object Constraint Language (OCL). The

semantics of this language are yet to be completely

precisely defined [12]. Due to the lack of formality and

precision in UML, analysis tools based on UML cannot

support rigorous analysis of a design.

Other formal notations like Syntropy, LOTOS and

Object Z were developed to formalize UML. A large

semantic gap existed between the formal notations and

the graphical ones that they represented. In reference [4]

a formal framework for UML state diagrams using

ASMs is proposed. In [9] the UML model and OCL

constraints are translated to the language of theorem

prover PVS. Thus along with defining formal syntax

and semantics for both UML and OCL, it also supports

formal verification of systems. This work deals with

class diagrams and state diagrams. As noted in [9] the

coarse level specification of OCL constraints is not

sufficient to automate the verification process. A

number of analysis techniques that were developed,

detected inconsistencies among different diagrams ([8],

[5], [6]). These techniques are good at detecting

inconsistencies, but can let some design flaws go

unnoticed, unless the designer notices them. In [7] the

authors discuss a framework that performs analysis of

the design by proposing a conjecture and proving it

true. Since, the basis of this is still a conjecture; it can

hide some design flaws. Other testing tools were

developed to test the behavior of the system ([10], [11]).

These are rather involved techniques and we believe

that more comprehensive results can be obtained by

The 2006 International Arab Conference on Information Technology (ACIT'2006)

using simpler techniques. Other analysis tools analyzed

the designs based on predefined constraints [2]. This

raises a couple of issues. First, this kind of analysis is

more generalized and the constraints apply to a broad

range of designs. Finer details of the design cannot be

analyzed by such hard-coded constraints. These finer

constraints are specific to each design and can vary

from design to design. Also, as the design notation

evolves, the predefined constraints may no longer be of

any use and a new tool might have to be created.

This paper addresses these issues and provides a

formal framework for the specification and analysis of

the design. The main objectives of this research are as

follows:

• To develop a formal notation for design

specification using simple set theory.

• To design a simple language for the user to express

analysis goals.

• To develop a formal analysis framework to perform

rigorous analysis of the design according to the

specified constraints.

• To support code generation after successful

analysis.

3. FORMAL NOTATION
Our goal is to define a simple and intuitive design

notation that can express all elements of an OOD. Our

notation is a set based notation and uses previously

defined concepts in Object Oriented Design Language

(OODL) and Communicating Sequential Processes

(CSP). OODL is an expressive language that captures

the notations of Booch’s and Coad’s approaches. This

language was formally defined in [1]. The behavior

modeling is based on the concept of Object Life History

(OLH) and CSP. CSP models both the OLH and the

object interactions. The structural model consists of a

design and the behavior is a part of this design. The

behavior model consists of objects. Objects interact

with each other using communication events that are

either outgoing or incoming and interact with the

environment using general events. The OLH describes

the different sequences of these events that can occur,

thus capturing the dynamic behavior of the system. The

design is defined as a set of elements, wherein each

element in turn is a set. A high-level description of the

formal notation is discussed below.

• The root component of our formal notation is a

global system, which is defined as a set of

packages.

• Each package in turn has a package name, a set of

dependencies in which this package participates, a

set of classes and a set of relationships between

these classes.

• Each class now has a class name, a set of attributes,

a set of methods and a behavior.

• Each dependency in the dependency set has two

elements which are the names of the two packages

participating in the dependency.

• Each relationship in a relationship set has a name,

the two participating classes, role names and their

respective cardinalities.

• Each attribute has a name and a type along with its

access modifier, which can be public, private or

protected.

• Each method has a name, an access modifier, a

return type and a set of parameters, where each

parameter in turn has a name and a type.

• The behavior set has a behavior name, a set of two

events that can participate in that class and a set of

sequences of events that can occur.

• Each event has a name and a type which can be

general, incoming or outgoing.

• Each sequence is a set of events that occur in a

particular order represented by edges.

4. FORMAL ANALYSIS
Once the design elements have been defined formally,

rigorous analysis can be done on the design to detect

errors. To analyze the design according to the user’s

analysis goals a simple Goal Expression Language

(GEL) is developed. The goal is to keep this language

as simple and as close to natural language as possible,

while making it powerful enough to express various

types of constraints. The processor includes support for

this language to perform semantic analysis of the

design. The basic element of this language is an

analysis goal for which a design needs to be analyzed.

This goal can be expressed using any of the following

elements of the language.

• Set membership element: The analysis goal is

applied to some of the design elements like class,

method etc. Members of these elements or sets

need to be identified first.

• Conditional element: Filtering conditions can be

used for selecting specific members of the set.

• Iterator element: Iterations can be specified on set

members by combining the universal quantifier

and/or the conditional element.

• Constraint element: Once the members are

identified, the constraints need to be specified.

These constraints can be specified using:

o Relational operators

o Set inclusion/exclusion operators

o Existential quantifier

o Universal quantifier

o If-then element

o Logical operators to specify more

than one constraint

o Predicates can be applied to set

members like cycles, superclass,

subclass etc.

Some commonly used properties of OODs are used as

examples to demonstrate the use of the language.

4.1. UNIQUE IDENTITY CONSTRAINTS
Some of the elements are required to be unique in a

design. Class names in a package cannot be repeated.

The same can be applied to attributes in a class and

parameters in a method, but the same does not apply to

methods. The identity of a method is not only its name

but also its parameters. So method signatures on the

The 2006 International Arab Conference on Information Technology (ACIT'2006)

whole have to be unique. Similar identity constraints

can be applied to relationships.

1. Class names in a package should be unique

 each class c1, c2 in each package p

 name(c1) != name(c2)

2. Method signatures in a class should be unique

each method m1, m2 in each class c

 m1 != m2

Discussion: The design elements on which the

constraints should be applied have to be specified along

with an instance of that element, like class c1, c2. The

constraints can be applied either directly to these

instances as a whole or on each field like name of class,

type of attribute etc. The keyword each specifies that all

the instances in each element have to satisfy these

constraints.

4.2. CONSTRAINTS ON ATTRIBUTES
1. All attributes in a class should be private

each attribute a in each class c

 visbility(a) == private

2. Attribute type should be built-in or user defined

each attribute a in each class c

 type(a) ∈ primitive ∨

 type(a) ∈ userdefined

Discussion: primitive, userdefined and private (or any

other access modifier) are all defined as keywords.

primitive includes int, float, char, bool and string since

a is an attribute. userdefined specifies the namespace for

attributes of each class. Similar constraints could be

applied to parameters, except that they cannot have an

access modifier.

4.3. CLASS ISOLATION CONSTRAINT
This constraint specifies that no class in a package can

be isolated. So, it has to participate in at least one

relationship in that package.

1. All classes in a package should have some

relationship with at least one of the other classes in

the package

each class c in each package p

 ∃ relationship r in same package p such that

 superclass(r) == name(c) ∨

 subclass(r) == name(c)

Discussion: The aggregation, composition and

generalization relationships identify participating

classes as superclass and subclass, which are used as

predicates in our language. The keyword same specifies

that the same set as used earlier is considered.

4.4. RELATIONSHIP CONSTRAINTS
Relationships between classes can be identified using

their name, the two classes that participate in that

relationship and their cardinality. The same pair of

classes cannot appear more than once in relationships.

Also, both the classes participating in a relationship

have to be different. Moreover in a composition

relationship, the part class or the subclass cannot be a

“part” in another relationship.

1. Relationship pair(c1, c2) can appear at most once

in a package

each relationship r1, r2 in each package p

 superclass(r1) != superclass(r2) ∧

 subclass(r1) != subclass(r2)

2. The two classes participating in a relationship have

to be different

each relationship r in each package p

 superclass(r) != subclass(r)

3. In composition the “part” class cannot be “part”

of any other relationship

each relationship r1, r2 in each package p such that

name(r1) == composition AND name(r2) ==

composition

 subclass(r1) != subclass(r2)

4. Circular inheritance cannot exist in a package

all relationship r in each package p such that

name(r) == generalization

 !cycles(r)

5. Cardinality should be non-negative integers

each relationship r in each package p

 cardinality1(r) >= 0 ∧

 cardinality2(r) >= 0 ∧

 cardinality1(r) ∈ integers ∧

 cardinality2(r) ∈ integers

Discussion: Conditions can be specified for selecting

instances using keywords such that. cycles is a predicate

that can be used to specify cycles constraint on

relationships, packages or events.

4.5. EVENT CONSTRAINTS
These constraints specify that the incoming events in

one class should have corresponding outgoing events in

the same class from which this event was received.

Similarly an outgoing event in a class should have a

corresponding incoming event in another class that is

being referenced as receiving this event.

1. Every incoming event has a corresponding

outgoing event

each event e in each behavior b, class c

 if type(e) == incoming then

 ∃ event e1 in behavior b1, class c1

 such that name(e) == name(e1)∧

 type(e1) == outgoing

2. Every outgoing event has a corresponding

incoming event

each event e in each behavior b, class c

 if type(e) == outgoing then

 ∃ event e1 in behavior b1, class c1

 such that name(e) == name(e1)∧

 type(e1) == incoming

3. Every event has a corresponding method of the

same name in its structural diagram

each event e in each behavior b, class c

 ∃ method m in same class c such that

 name(e) == name (m)

4. The behavior name is the same as the class name in

the structural diagram

each behavior b in each class c

 name(b) == name(c)

5. All events in each sequence must be declared

each event e in each sequence s, behavior b

 ∃ event e1 in same behavior b such that

The 2006 International Arab Conference on Information Technology (ACIT'2006)

 e1 == e

6. All events declared must be used in some sequence

each event e in each behavior b

 ∃ sequence s in same behavior b

 such that some(event(s)) == e

7. No sequence can start with an outgoing event

each sequence s in each behavior b

 type(first(event(s))) != outgoing

Discussion: if statements can also be used as usual.

Logical operators can be used to combine conditions as

well as then statements.

5. TRANSLATION
This section discusses the mapping from the analysis

expression language to the intermediate language of the

processor.

• The “each” statements map to iterations that are

performed on each of the objects of the specified

design elements. The included operations are

performed on each of the objects.

E.g. each class c in each package p

 Stmt1

MAPS TO: In each package p, consider each class

c and execute Stmt1 on c.

• While the keyword “each” means perform the

following operation on each object, the keyword

“all” means, consider a set of all the objects and

perform the operation on this set.

E.g. all relationship r in each package p such that

name(r) == generalization

 Stmt1

MAPS TO: Consider a set of all relationships with

name “generalization” and execute Stmt1 on this

set.

• If the operations are not to be performed on all the

objects, filtering conditions can be specified using

“such that” constraint. Hence, “such that”

statements map to filtering conditions.

E.g. each relationship r in each package p such that

name(r) == generalization

 Stmt1

MAPS TO: In each package p, consider each

relationship r with name generalization and execute

Stmt1 on r.

• Relational operators can be specified for comparing

predicates on objects like name, type etc. They can

also be used to compare objects themselves, in

which case each field of one object is compared to

corresponding field of the other object.

E.g. name(c1) != name(c2)

MAPS TO: c1.Name != c2.Name

E.g. m1 != m2; If m1 and m2 are methods

MAPS TO: m1.Type != m2.Type OR

 m1.Name != m2.Name OR

 m1.Parameter != m2.Parameter

• Relational operators can also involve keywords.

The keywords map to function calls. These

functions are predefined.

E.g. a IN primitive

MAPS TO: a belongs to the predefined set

a ∈ {int, float, char, bool, string}; if a is an

attribute or a parameter

a ∈ {int, float, char, bool, string, void}; if a is a

method

• “exists” statements map to search functions

meaning search for at least one element that

satisfies the condition.

E.g. ∃ event e in each class c such that

 Stmt1

MAPS TO: search in class c at least one event e

such that it satisfies condition specified in Stmt1.

Multiple conditions can be specified using logical

operators ∧ and ∨ .

6. CODE GENERATION
The design can be analyzed for different constraints and

the model can be refined in case of any errors. After

successful analysis of the design, C++ code is

generated. This code is the skeleton based on the

design, implementing both the structural and behavioral

models of the design. The structural code is the class

definition, while the behavioral code is the trace of

events specified in the behavior model. A simplified

model of a university system is shown in the Appendix.

7. CONCLUSION
A formal framework for the specification and analysis

of OODs was developed. This framework provides a

formal, set-based design notation, a goal expression

language, an analysis processor and a code generator.

The design notation models both structural and

behavioral views of the design and is semantically

similar to the graphical notations it models. GEL and

the analysis processor at this time analyze static

behavior of the system. More work can be done to

include support for dynamic behavior analysis of the

system. The language is powerful enough to express the

dynamic behavior goals. The code generator needs to

handle the dynamic behavior goals. The formal

semantics of GEL will be explained in detail elsewhere.

Work is currently being done on it.

REFERENCES
[1] Belkhouche B., and Chavarro M., “Analysis of

Object-Oriented Designs,” Journal of Object-

Oriented Programming, pp. 30-42, Feb 1995.

[2] Belkhouche B., and Nix A., “Formal Analysis of

UML-based Designs,” in Proceedings of the

International Conference on Software Engineering

Research and Practice, SERP ‘04, USA, pp. 220-

226, Jun 2004.

[3] Booch G., Rumbaugh J., and Jacobson I., The

Unified Modeling Language User Guide, Addison-

Wesley, 1999.

[4] Borger E., Cavarra A., and Riccobene E., “On

Formalizing UML State Machines using ASMs,”

Information and Software Technology, vol. 46, no.

5 pp. 287-292, 2004.

[5] Egyed A., Automatically Validating Model

Consistency During Refinement, Technical Report,

University of Southern California, 2000.

The 2006 International Arab Conference on Information Technology (ACIT'2006)

[6] Engels G., Groenewegen Luuk., Heckel R., and

Kuster J., “A Methodology for Specifying and

Analyzing Consistency of Object-Oriented

Behavioral Models,” in Proceedings of 8
th

European Software Engineering Conference Held

Jointly with 9
th
 ACM SIGSOFT International

Symposium on Foundations of Software

Engineering, pp. 186-195, 2001.

[7] Evans A. S., France R. B., Lano K.C., and Rumpe

B., “The UML As A Formal Modeling Notation,”

UML ’98-Beyond the Notation, Mulhouse, France,

pp. 75-81, 1998.

[8] Fradet P., Metayer D. L., and Perin M.,

“Consistency Checking for Multiple View

Software Architectures,” Lecture Notes in

Computer Science, pp. 410-428, 1999.

[9] Kyas M., Fecher H., deBoer F., Jacob J., Hooman

J., Zwaag M., Arons T., and Kugler H.,

“Formalizing UML Models and OCL Constraints

in PVS,” Electronic Notes in Theoretical

Computer Science, pp. 39-47, 2005.

[10] Moreira A., and Clark R., “Combining Object-

Oriented Modeling and Formal Description

Techniques,” in Proceedings of 8
th
 European

Conference on Object-Oriented Programming

(ECOOP’94), pp. 344-364, 1994.

[11] Pilskalns O., Andrews A., Ghosh S., and France

R., “Rigorous Testing by Merging Structural and

Behavioral UML Representations,” in

Proceedings of the 6
th
 International Conference on

the Unified Modeling Language, pp. 234-248,

2003.

[12] Sendall S., and Strohmeier A., “Using OCL and

UML to Specify System Behavior,” Object

Modeling with the OCL, The Rationale Behind the

Object Constraint Language, pp. 250-279, 2002.

APPENDIX
University System Design

//University System Model

begin design UniversitySystem

begin package UniversitySystem

class Department

 attributes:

 private deptId: int,

 private deptName: string

 relations:

 association Student enrolls [1..*],

 association Course offers [1..*]

 operations:

 public AddDept(int: DId, string: DName): bool,

 public DelDept(int: DId): bool

end Department

class Student

 attributes:

 private studentId: int,

 private FName: string,

 private LName: string,

 private DId: int

 relations:

 association Department majorsIn[*..1],

 association Registration requests[1..*]

 operations:

 publicAddStudent(int: studentId, string: FName,

string: LName, int: DId): bool,

 public DelStudent(int: studentId): bool

end Student

class Course

 attributes:

 private int: courseId,

 private string: courseName,

 private int deptId,

 private int creditHours

 relations:

 association Department belongsTo[*..1]

 association Registration requires[1..*]

 operations:

 public AddCourse(int: CId, string: CName, int: DId,

int: CHours): bool,

 public DelCourse(int CId, int DId): bool

end Course

class Registration

 attributes:

 private int: SId,

 private int: CId

 relations:

 association Student registers[*..1],

 association Course refersTo[*..1]

 operations:

 public AddRegistration(int: SId, int: CId): bool,

 public DelRegistration(int: SId, int: CId): bool

end Registration

begin behavior UniversitySystem

OLH Department

alphabet Department = {AddDept(did, dname),

DelDept(did), Course ! AddCourse(cid, cname, did,

chrs), Course ! DelCourse(cid)}

Department = (AddDept(did, dname) -> Course !

AddCourse(cid, cname, did, chrs) | Course !

DelCourse(cid, did) -> DelDept(did))

end behavior UniversitySystem

end package UniveristySystem

end design UniversitySystem

//Generated Code Structural

class Department

{

 private:

 int deptId;

 string deptName;

 public:

 Department();

 ~Department();

 bool AddDept(int Did, string DName);

 bool DelDept(int DId);

};

The 2006 International Arab Conference on Information Technology (ACIT'2006)

class Course

{

 private:

 int courseId;

 int courseName;

 int deptId;

 int creditHours;

 public:

 Course();

 ~Course();

 bool AddCourse(int CId, string CName, int Did, int

CHours);

 bool DelCourse(int Cid, int DId);

};

//Generated Code Behavioral

behavior Department

{

 AddDept(did, dname);

 AddCourse(cid, cname, did, chrs);

 OR

 DelCourse(cid, did);

 DelDept(did);

}

