Abstract: A voice command system for a robot arm is designed as a part of a research project. The methodology adopted is based on a spotted words recognition system based on a robust HMM (Hidden Markov Model) technique with cepstral coefficients as parameters used in automatic speech recognition system. To implement the approach on a real-time application, a Personal Computer parallel port interface was designed to control the movement of a set of stepper motors. The user can control the movements of five degree of freedom (DOF) for a robot arm using a vocal phrase containing spotted words. Other applications are proposed.

Keywords: Human-machine interaction, hidden Markov Model, voice control, stepper motors and Robotics.

I. Introduction

Human-robot voice interface has a key role in many application fields and various studies made in the last few years have given good results in both research and commercial applications [1-4] and [11]. This paper proposes a new approach to the problem of the recognition of spotted words within a phrase, using a statistical approach based on HMM [2] and [5]. The increase in complexity as compared to the use of only traditional approach is quite acceptable but not negligible, however the system achieves considerable improvement in the recognition phase, thus facilitating the final decision and reducing the number of errors in decision taken by the voice command guided system. Speech recognition systems constitute the focus of a large research effort in Artificial Intelligence (AI), which has led to a large number of new theories and new techniques. However, it is only recently that the field of robot and AGV navigation has started to import some of the existing techniques developed in AI for dealing with uncertain information.

HMM is a robust technique developed all applied in pattern recognition. Very interesting results were obtained in isolated words speaker independent recognition system, especially in limited vocabulary. However, the rate of recognition is lower in continuous speaking system. The approach proposed here is to design a system that gets specific words within a large or small phrase, process the selected words (Spots) and then execute an order [6][7]. As application, a set of four stepper motors were installed via a PC parallel port interface. The application uses a set of twelve commands in Arabic words, divided in two subsets one subset contains the names of main parts of a robot arm (base, arm, fore-arm, wrist (hand), and gripper), the second subset contains the actions that can be taken by one of the parts in subset one (left, right, up, down, stop, open and close). The application should be implemented in a DSP or a microcontroller in the future in order to be autonomous [8] and has to be robust to any background noise confronted by the system.

The aim of this paper is therefore the recognition of spotted words from a limited vocabulary in the presence of background noise. The application is speaker-dependent. Therefore, it needs a training phase. It should, however, be pointed out that this limit does not depend on the overall approach but only on the method with which the reference patterns were chosen. So by leaving the approach unaltered and choosing the reference patterns appropriately, this application can be made speaker-independent [9].

As application, a vocal command for a set of stepper motors is chosen. There have been many research projects dealing with robot control and teleroperation of arm manipulators, among these projects, there are some projects that build intelligent systems [10-12]. Since we have seen human-like robots in science fiction movies such as in “I ROBOT” movie, making intelligent robots or intelligent systems became an obsession within the research group. Voice command needs the recognition of spotted words from a limited vocabulary used in Automatic Guided Vehicle (AGV) system [13] and in arm manipulator control [14].

2. Designed Application Description

The application is based on the voice command for a set of four stepper motors. It therefore involves the recognition of spotted words from a limited vocabulary used to recognise the elements and control the movement of a robot arm.
The vocabulary is limited to twelve words divided into two subsets: object name subset necessary to select the part of the robot arm to move and command subset necessary to control the movement of the arm example: turn left, turn right and stop for the base (shoulder), open close and stop for the gripper. The number of words in the vocabulary was kept to a minimum both to make the application simpler and easier for the user. The user selects the robot arm part by its name then gives the movement order on a microphone, connected to sound card of the PC. The user can give the order in a natural language phrase as example: “hey, gripper open please”. A speech recognition agent based on HMM technique detects the spotted words within the phrase, recognises the words, then the system will generate a byte where the four most significant bits represent a code for the part of the robot arm and the four less significant bits represent the action to be taken by the robot arm. Finally, the byte is sent to the parallel port of the PC and then it is transmitted to the robots via a radio frequency emitter.

The application is first simulated on PC. It includes three phases: the training phase, where a reference pattern file is created, the recognition phase where the decision to generate an accurate action is taken and the appropriate code generation, where the system generates a code of 8 bits on parallel port. In this code, four higher significant bits represent the action to be taken and the four lower significant bits are used to codify the object names and four lower bits are sued to codify the actions. The action is shown in real-time on parallel port interface card that includes a set four stepper motors to show what command is taken and a radio Frequency emitter.

3. The Speech Recognition Agent

The speech recognition agent is based on HMM. In this paragraph, a brief definition of HMM is presented and speech processing main blocks are explained. However, a pre-requisite phase is necessary to process a data base composed of twelve vocabulary words repeated twenty times by twenty persons. So before starting in the creation of parameters, 20*20*12 “wav” files are recoded in a repertory.

The training phase will, each utterance (saved wav file) is converted to a Cepstral domain (MFCC features, energy, and first and second order deltas) which constitutes an observation sequence for the estimation of the HMM parameters associated to the respective word. The estimation is performed by optimisation of the likelihood of the training vectors corresponding to each word in the vocabulary. This optimisation is carried by the Baum-Welch algorithm[7]

3.1 HMM basics

A Hidden Markov Model (HMM) is a type of stochastic model appropriate for non stationary stochastic sequences, with statistical properties that undergo distinct random transitions among a set of different stationary processes. In other words, the HMM models a sequence of observations as a piecewise stationary process. Over the past years, Hidden Markov Models have been widely applied in several models like pattern [6], or speech recognition [6][9]. The HMMs are suitable for the classification from one or two dimensional signals and can be used when the information is incomplete or uncertain. To use a HMM, we need a training phase and a test phase. For the training stage, we usually work with the Baum-Welch algorithm to estimate the parameters (\(\Pi, A, B\)) for the HMM [7, 9]. This method is based on the maximum likelihood criterion. To compute the most probable state sequence, the Viterbi algorithm is the most suitable.

A HMM model is basically a stochastic finite state automaton, which generates an observation string, that is, the sequence of observation vectors, \(O_0\cdots O_t\cdots O_n\). Thus, a HMM model consists of a number of \(N\) states \(S_i\) and of the observation string produced as a result of emitting a vector \(O_t\) for each successive transitions from one state \(S_i\) to a state \(S_j\). \(O_t\) is \(d\) dimension and in the discrete case takes its values in a library of \(M\) symbols.

The state transition probability distribution between state \(S_i\) to \(S_j\) is \(A=\{a_{ij}\}\), and the observation probability distribution of emitting any vector \(O_t\) at state \(S_j\) is given by \(B=\{b_j(O_t)\}\). The probability distribution of initial state is \(\Pi=\{\pi_i\}\).

\[a_{ij} = P(q_{t+1} = S_j \mid q_t = S_i) \quad (1)\]

\[a_{ij} = P(q_{t+1} = S_j \mid q_t = S_i) \quad (2)\]

\[\pi_i = P(q_0 = S_i) \quad (3)\]

Given an observation \(O\) and a HMM model \(\lambda=(A,B,\Pi)\), the probability of the observed sequence by the forward-backward procedure \(P(O\mid \lambda)\) can be computed [10]. Consequently, the forward variable is defined as the probability of the partial observation sequence \(O_t\) \((t=0,1,\ldots,N)\) (until time \(t\) and the state \(S\) at time \(t\), with the model \(\lambda\) as \(a(i)\), and the backward variable is defined as the probability of the partial observation sequence from \(t+1\) to the end, given state \(S\) at time \(t\) and the model \(\lambda\) as \(\beta(i)\), the probability of the observation sequence is computed as follow:

\[P(O \mid \lambda) = \sum_{i=1}^{N} \alpha_i(i) \beta_i(i) = \sum_{i=1}^{N} \alpha_i(i) \beta_i(i) \quad (4)\]

and the probability of being in state \(I\) at time \(t\), given the observation sequence \(O\) and the model \(\lambda\) is computed as follow:

\[\pi_i = P(q_0 = S_i) \quad (5)\]
The flowchart of a connected HMM is an HMM with all the states linked altogether (every state can be reached from any state). The Bakis HMM is left to right transition HMM with a matrix transition defined as:

\[
\begin{align*}
 a_{ij} &= 0 \quad \text{if} \quad j < i \\
 a_{ij} &= 0 \quad \text{if} \quad j < i + \Delta
\end{align*}
\] (6)

Figure 1: Presentation of left-right (Bakis) HMM

3.2 Speech processing phase

Once the phrase is acquired via a microphone and the PC sound card, the simples are stored in a wav file. Then the speech processing phase is activated. During this phase the signal (simples) goes through different steps: pre-emphasis, frame-blocking, windowing, feature extraction and MFCC analysis.

a) Pre-emphasis step

In general, the digitized speech waveform has a high dynamic range. In order to reduce this range pre-emphasis is applied. By pre-emphasis [1], we imply the application of a high pass filter, which is usually a first-order FIR of the form \(H(z) = 1 - a z^{-1} \). The pre-emphasize is implemented as a fixed-coefficient filter or as an adaptive one, where the coefficient \(a \) is adjusted with time according to the autocorrelation values of the speech. The pre-emphasize block has the effect of spectral flattening which renders the signal less susceptible to finite precision effects (such as overflow and underflow) in any subsequent processing of the signal. The selected value for \(a \) in our work is 0.9375.

b) Frame blocking

Since the vocal tract moves mechanically slowly, speech can be assumed to be a random process with slowly varying properties [1]. Hence, the speech is divided into overlapping frames of 20ms every 10ms. The speech signal is assumed to be stationary over each frame and this property will prove useful in the following steps.

c) Windowing

To minimize the discontinuity of a signal at the beginning and end of each frame, we window each frame frames [1]. The windowing tapers the signal to zero at the beginning and end of each frame. A typical window is the Hamming window of the form:

\[
W(n) = 0.54 - 0.46 \cos \left(\frac{2\pi n}{N-1} \right) \quad 0 \leq n \leq N - 1 \] (7)

d) Feature extraction

In this step, speech signal is converted into a stream of feature vectors coefficients which contain only that information about given utterance that is important for its correct recognition. An important property of feature extraction is the suppression of information irrelevant for correct classification, such as information about speaker (e.g., fundamental frequency) and information about transmission channel (e.g., characteristic of a microphone). The feature measurements of speech signals are typically extracted using one of the following spectral analysis techniques: MFCC Mel frequency filter bank analyzer, LPC analysis or discrete Fourier transform analysis. Currently the most popular features are Mel frequency Cepstral coefficients MFCC [7].

e) MFCC Analysis

The Mel-Filter Cepstral Coefficients are extracted from the speech signal. The speech signal is pre-emphasized, framed and then windowed, usually with a Hamming window. Mel-spaced filter banks are then utilized to get the Mel-spectrum. Figure 2.b shows the Mel-spaced filter banks that are used to get the Mel-spectrum. The natural Logarithm is then taken to transform into the Cepstral domain and the Discrete Cosine Transform is finally computed to get the MFCCs. As shown in the block diagram of Figure 3.

\[
C_k = \sum_{i=1}^{N} \log(E_i) \cos \left(\frac{\pi k(i-1/2)}{N} \right) \] (8)
The speech recognition agent based on HMM will detect words, and process each word. Depending on the probability of recognition of the object name and the command word a code will be transmitted to the parallel port of the PC. The vocabulary to be recognized by the system and their meanings are listed as in Table 1. It is obvious that within these words, some are object names and other are command names. The code to be transmitted is composed of 8 bits, four bits most significant bits are used to code the object name and the four least significant bits are used to code the command to be executed by the selected object. Example: "ureed diraa faw please". A parallel port interface was designed to show the real-time commands. It is based on the following TTL IC (integrated circuits): a 74LS245 buffer, a microcontroller PIC16F84 and a radio frequency transmitter from RADIOMETRIX TX433-10 (modulation frequency 433 Mhz and transmission rate 10 Kbs). However, a simulation card were designed to control the set of four stepper motor directly by LMatlab software. It is based on a buffer 74LS245, a 74LS138 3/8 decoder, and four power circuits for the motors.

Table 1. The meaning of the vocabulary voice commands, affected code and motor controlled.

<table>
<thead>
<tr>
<th>Object Name</th>
<th>Motor Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assas</td>
<td>Base (M0)</td>
</tr>
<tr>
<td>Diraa</td>
<td>Upper limb motor (M1)</td>
</tr>
<tr>
<td>Saad</td>
<td>Limb motor (M2)</td>
</tr>
<tr>
<td>Meassam</td>
<td>Wrist (hand) motor (M3)</td>
</tr>
<tr>
<td>Mikbath</td>
<td>Gripper motor (M4)</td>
</tr>
<tr>
<td>Yamine</td>
<td>Left turn (M0)</td>
</tr>
<tr>
<td>Yassar</td>
<td>Right turn (M0)</td>
</tr>
<tr>
<td>Fawk</td>
<td>Up movement M1, M2 and M3</td>
</tr>
<tr>
<td>Tahta</td>
<td>Down movement M1, M2 and M3</td>
</tr>
<tr>
<td>Iftah</td>
<td>Open Grip, action on M4</td>
</tr>
<tr>
<td>Ighlak</td>
<td>Close grip, action on M4</td>
</tr>
<tr>
<td>Kif</td>
<td>Stop the movement, stops M0, M1, M2, M3 or M4</td>
</tr>
</tbody>
</table>

A parallel port interface was designed to show the real-time commands. It is based on the following TTL IC (integrated circuits): a 74LS245 buffer, a microcontroller PIC16F84 and a radio frequency transmitter from RADIOMETRIX TX433-10 (modulation frequency 433 Mhz and transmission rate 10 Kbs). However, a simulation card were designed to control the set of four stepper motor directly by LMatlab software. It is based on a buffer 74LS245, a 74LS138 3/8 decoder, and four power circuits for the motors.

4. Parallel Interface circuit

The speech recognition agent based on HMM will detect words, and process each word. Depending on the probability of recognition of the object name and the command word a code will be transmitted to the parallel port of the PC. The vocabulary to be recognized by the system and their meanings are listed as in Table 1. It is obvious that within these words, some are object names and other are command names. The code to be transmitted is composed of 8 bits, four bits most significant bits are used to code the object name and the four least significant bits are used to code the command to be executed by the selected object. Example: “ureed diraa faw please”.

A parallel port interface was designed to show the real-time commands. It is based on the following TTL IC (integrated circuits): a 74LS245 buffer, a microcontroller PIC16F84 and a radio frequency transmitter from RADIOMETRIX TX433-10 (modulation frequency 433 Mhz and transmission rate 10 Kbs). However, a simulation card were designed to control the set of four stepper motor directly by LMatlab software. It is based on a buffer 74LS245, a 74LS138 3/8 decoder, and four power circuits for the motors.

5. Robot Arm Interface

As in Figures 5.a and 5.b, the structures of the mechanical hardware and the computer board of the robot arm in this paper is similar to MANUS [10-12]. However, since the robot arm in this paper needs to perform simpler tasks than those in [13] do, the computer board of the robot arm consists of a PIC16F84, with 1K-instruction EEPROM (Electrically Programmable Read Only Memory) [15], four power
circuits to drive the stepper motors and one H bridges
driver using BD134 and BD133 transistors for DC
motor to control the gripper, a RF receiver module from
RADIOMETRIX which is the SILRX-433-10 (modulation frequency 433MHz and transmission rate is
10 Kbs) [16]. Each motor in the robot arm performs the
corresponding task to a received command (example:
yamin”, “kif” or Fawk”) as in Table 1. Commands and
their corresponding tasks in autonomous robots may be
changed in order to enhance or change the application.

6. Experiments on the System

The developed system has been tested within the
laboratory of L.A.S.A, there were two different
conditions to be tested: The distance of the microphone
from the speaker, and the rate of recognition in periodic
noise and nonstationary noise (NSN) environment. The
system, first, had been tested in the laboratory and
outside in order to detect the environment effect on the
recognition rate, then. After testing the recognition of
each word 25 times in the following conditions: a) the
Laboratory (LASA) with NSN, b) outside the LASA
with periodic noise (PN), c) inside the LASA with NSN, and d) inside the LASA with PN. The results
are shown in figure 6 where the numbers in abscissa axe

corresponds to the order of voice command word as
they appear in Table 1.

7. Conclusion and Future Work

A voice command system for robot arm is proposed and
is implemented based on a HMM model for spotted
words. Since the designed electronic command for the
robot arm consists of a microcontroller and other low-
cost components namely RF transmitters, the hardware
design can easily be carried out. The results of the tests
shows that a better recognition rate can be achieved
inside the laboratory and especially if the phonemes of
the selected word for voice command are quite
different. However, a good position of the microphone
and additional filtering may enhance the recognition
rate. Several interesting applications of the proposed
system different from previous ones are possible, such
as command of a set of autonomous robots or a set of
home electronic goods.

The HMM based model gives better results than DTW
(dynamic time warping) or Crossing zero and exremums
approach. It is speaker independent. However by
computing parameters based on speakers pronunciation
the system can be speaker dependant.
The increase in computational complexity as compared with a traditional approach is, however, negligible. Spotted words detection is based on speech detection then processing of the detected. Once the parameters were computed, the idea can be implemented easily within a hybrid design using a DSP with a microcontroller since it does not need too much memory capacity. Finally we notice that by simply changing the set of command words, we can use this system to control other objects by voice command such as an electric wheelchair movements or a set of autonomous robots\[17]\[18].

8. References

[18] Fezari M., M. Bousbia-Salah and M. Bedda, “Hybrid technique to enhance voice command system for a wheelchair”, ACIT’05, Jordan, 2005